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Abstract
The agri-food sector is facing significant challenges due to climate change, unpredictable weather,
and rapid population growth. The growing demand to embrace advanced agricultural systems
that boost productivity while mitigating climate impacts requires accurate and reliable crop
monitoring techniques. In this context, site-specific farm management and remote sensing have
become indispensable. Remote sensing offers real-time information about crop growth and
health throughout the growing season at different scales. UAV-based remote sensing, in partic-
ular, offers a cost-effective tool for monitoring crop growth and health with high spatiotemporal
resolution that enables response to field-scale issues by driving informed decision-making. Our
study contributes to this evolving landscape by exploring the potential of UAV-based multi-
spectral imaging in crop monitoring on the field scale.

In the first study, high-resolution imagery from the DJI Phantom 4 multispectral UAV
system was employed to monitor the seasonal development of spelt in a biochar-enriched exper-
iment. A straightforward data processing workflow was developed based on an empirical line
method to convert raw UAV data to normalized and comparable reflectance maps and calculate
various vegetation indices. Results indicated that EVI was the most effective index in relation
to the actual yield, indicating better spelt development over the biochar-enriched plots with a
full conventional fertilization amount compared to controls that received the same conventional
fertilization.

The second study addressed the retrieval of sun-induced fluorescence, F760, from SIFcam,
a dual-camera system prototype mounted on a UAV. A comprehensive overview and advance-
ments of the developed methodology for SIFcam imagery, in addition to a second innovative
workflow, were presented. The F760 retrieved from the two workflows showed strong correla-
tions with ground-based measurements (R² = 0.92) and moderate correlations with airborne
imaging spectrometer HyPlant (R² = 0.56, 0.52 for workflows 1 and 2b, respectively). The
SIFcam has shown its capability to effectively disentangle the fluorescence signal from canopy
reflectance with a moderate level of accuracy and adequate stability in data collection at the
field scale, with less than one-pixel variation between spectral channels in both horizontal and
vertical directions.

The third study investigated the potential of integrating SIFcam F760 alongside UAV-based
multispectral VIs to characterize and delineate diverse new and old winter wheat cultivars. SIF-
cam demonstrated a notable potential in capturing the variability of F760 between wheat cul-
tivars with structural and pigment differences. New wheat cultivars generally revealed higher
F760, consistent with their higher chlorophyll content, yet old cultivar Banco indicated that
canopy architecture could significantly modulate TOC F760, with F760 values comparable to or
even exceeding those of certain new cultivars. VIs sensitive to chlorophyll content, particularly
TCARI/OSAVI (Cohen’s d >= 0.5), outperformed structure-related VIs and F760 for distin-
guishing the cultivars. SIFcam proved to be a valuable tool for field plant phenotyping and
potentially guiding breeding programs.



Zusammenfassung

Der Agrar- und Ernährungssektor steht aufgrund des Klimawandels, unvorhersehbarer Wet-
terbedingungen und des schnellen Bevölkerungswachstums vor großen Herausforderungen. Die
wachsende Nachfrage nach fortschrittlichen landwirtschaftlichen Systemen, die die Produktiv-
ität steigern und gleichzeitig die Auswirkungen des Klimawandels abmildern, erfordert genaue
und zuverlässige Techniken zur Überwachung von Pflanzenkulturen. In diesem Zusammenhang
sind eine standortbezogene Betriebsführung und die Fernerkundung unverzichtbar geworden.
Die Fernerkundung bietet Echtzeitinformationen über das Wachstum und den Gesundheitszu-
stand der Pflanzen während der gesamten Vegetationsperiode auf verschiedenen räumlichen
Ebenen. Insbesondere die UAV-gestützte Fernerkundung bietet ein kostengünstiges Instrument
zur Überwachung des Wachstums und der Gesundheit von Nutzpflanzen mit hoher räumlicher
und zeitlicher Auflösung, das es ermöglicht, auf Probleme im Feld zu reagieren und fundierte
Entscheidungen zu treffen. Unsere Studie trägt zu dieser sich entwickelnden Methodenland-
schaft bei, indem sie das Potenzial der UAV-gestützten multispektralen Bildgebung bei der
Überwachung von Nutzpflanzen im Feldmaßstab untersucht.

In der ersten Studie wurden hochauflösende Bilder des multispektralen UAV-Systems DJI
Phantom 4 verwendet, um die saisonale Entwicklung von Dinkel in einem mit Biokohle an-
gereicherten Experiment zu überwachen. Auf der Grundlage einer empirischen Linien Ko-
rrekturmethode wurde ein unkomplizierter Datenverarbeitungsprozess entwickelt, um UAV-
Rohdaten in normalisierte und vergleichbare Reflexionskarten umzuwandeln und verschiedene
Vegetationsindizes zu berechnen. Die Ergebnisse zeigten, dass EVI der effektivste Index in
Bezug auf den tatsächlichen Ertrag war, was auf eine bessere Dinkelentwicklung auf den mit
Biokohle angereicherten Parzellen bei voller konventioneller Düngung im Vergleich zu den Kon-
trollen hinwies, die die gleiche konventionelle Düngung erhielten.

Die zweite Studie befasste sich mit der Gewinnung von sonneninduzierter Fluoreszenz,
F760, von SIFcam, einem auf einer Drohne montierten Prototyp eines Dual-Kamera-Systems.
Es wurden ein umfassender Überblick und Weiterentwicklungen der entwickelten Datenverar-
beitungsmethodik für SIFcam-Bilder sowie ein zweiter innovativer Arbeitsablauf vorgestellt. Die
aus den beiden Workflows gewonnenen F760 zeigten starke Korrelationen mit bodengestützten
Messungen (R² = 0,92) und mäßige Korrelationen mit dem luftgestützten bildgebenden Spek-
trometer HyPlant (R² = 0,56 bzw. 0,52 für Workflows 1 und 2b). Die SIFcam hat gezeigt,
dass sie in der Lage ist, das Fluoreszenzsignal effektiv von der Kronendachreflexion zu tren-
nen, und zwar mit mäßiger Genauigkeit und angemessener Stabilität bei der Datenerfassung
auf der Feldskala, mit weniger als einem Pixel Abweichung zwischen den Spektralkanälen in
horizontaler und vertikaler Richtung.

Die dritte Studie untersuchte das Potenzial der Integration von SIFcam F760 mit UAV-
basierten multispektralen VIs zur Charakterisierung und Abgrenzung verschiedener, neuer und
alter Winterweizensorten. Die SIFcam zeigte ein beachtliches Potenzial bei der Erfassung der
Variabilität von F760 zwischen Weizensorten mit Struktur- und Pigmentunterschieden. Neue
Weizensorten wiesen im Allgemeinen höhere F760-Werte auf, was mit ihrem höheren Chloro-
phyllgehalt übereinstimmt. Die alte Sorte Banco zeigte jedoch, dass die Kronendacharchitektur
den TOC-Wert F760 erheblich beeinflussen kann, wobei die F760-Werte mit denen bestimmter
neuer Sorten vergleichbar sind oder diese sogar übertreffen. Die für den Chlorophyllgehalt
empfindlichen VIs, insbesondere TCARI/OSAVI (Cohen’s d >= 0,5), übertrafen die struk-
turbezogenen VIs und F760 zur Unterscheidung der Sorten. SIFcam erwies sich als wertvolles
Instrument für die Phänotypisierung von Pflanzen im Freiland und als mögliche Leittechnologie
für Zuchtprogramme.
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Chapter 1

Introduction

1.1 Remote sensing in plant crop agronomy
The agri-food sector is facing significant challenges due to climate change, unpre-
dictable weather, and rapid population growth [1]. As has been declared by the
World Summit on Food Security, ”The world’s population is expected to grow to
almost 10 billion by 2050, boosting agricultural demand by approximately 50 %
compared to 2013 levels, even under modest economic growth scenarios” [2]. To
meet the estimated nutritional needs of the world, it is essential to boost crop pro-
duction accompanied by sustainable management practices of agricultural lands
to stop or at least slow down the negative impacts on the water and soil qual-
ity and quantity, land degradation, greenhouse gas emissions, or biodiversity [3].
However, climate change has begun to cause a reduction in crop productivity in
terms of quality and quantity [4, 5].

In light of this challenging context for agriculture, there is a strong require-
ment for monitoring crop growth and status across locations and environmental
contexts, with various temporal resolutions, and for different purposes[6]. Moni-
toring is an ongoing process of tracking the dynamic changes in crop health and
condition during the growing season [7]. Traditionally, crop monitoring involves
manual human and ground-based assessments. However, this is a labor-intensive,
time-consuming, expensive, and error-prone process and is not feasible for large-
scale monitoring [8].

To address the abovementioned limitations, and following an earlier remark by
the technology executive committee of the United Nations Framework Convention
on Climate Change (UNFCCC) (2014) [9] of embracing agricultural technologies
that are capable of increasing productivity to meet the growing food demand
while minimizing the adverse effects of climate change, there has been an ongoing
global campaign to implement precision agriculture (PA) and remote sensing (RS)
technology for the mapping and monitoring of agricultural crops [10, 11].
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PA is a data-driven procedure that aims to enhance agricultural productivity
under different growth conditions while ensuring sustainability [12]. PA employs
a site-specific crop management approach that gathers, processes, and analyses
spatial and temporal variability in soil, field, and crop properties using accurate
and reliable crop monitoring techniques. By delivering the collected information
to the farmers and agronomists, they can make informed decisions about resource
allocation and optimize inputs by applying spatially variable agronomic inputs,
such as irrigation, fertilizers, and pesticides, tailored to the specific conditions
and needs of different areas within a field. This approach not only increases the
yield but also mitigates environmental impact by reducing unnecessary input use
and nutrient losses. One crucial step of PA is large-scale data collection, which is
mostly conducted by remote sensing (RS) techniques, which is the primary driver
of the entire PA process along with other technologies, such as robotic systems,
weather forecasting technology, and global navigation satellite systems(GNSS )
[13, 14, 11].

RS is the process of acquiring information about an object or the surface of
the Earth from a distance. Agricultural RS is a specialized field that generates
a huge data volume that can be used to non-destructively extract accurate and
reliable information to support agriculture decisions. A large part of the gen-
erated information is image data, which typically involves the measurement of
reflected radiation from canopies. In addition to reflectance, transmittance, and
absorption, plant leaves can emit energy by fluorescence or thermal emission. The
solar reflected radiation in the optical domain (i.e., between 380 and 2500 nm) is
commonly used in vegetation studies because most of the diagnostic absorption
features of green vegetation are located in this part of the spectrum [15].

Plants’ reflectance is inversely related to radiation absorbed by plant pigments
and varies across different wavelengths of incident radiation [16]. It is well known
that the spectral reflectance of plants changes with plant type, leaf water con-
tent, plant crop growth cycles (phenology), and health. It is determined by the
morphological and chemical properties of leaves and plant canopies[17, 18].

RS can serve as an essential tool for spatially and temporally monitoring veg-
etation [19] by repeatedly providing information on crop status throughout the
season at different scales [20, 21]. RS can be utilized as a proactive diagnostic
system that enables early detection of crop threats at the early stage, allowing
the agricultural community to intervene in problems that spread widely and neg-
atively impact crop productivity [22]. RS aids agriculture in a variety of aspects,
including:

• identification of new crop varieties with desirable traits such as increased
yield, improved quality, more resistance to specific diseases or pest infesta-
tion, and tolerance to environmental stress (field phenotyping) [23, 24],
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• monitoring of agricultural land use [20, 25]

• forecasting of within-season crop production [26, 27],

• optimization of short-term production (PA) [16].

There are numerous biophysical, physiological, and biochemical crop prop-
erties that can be monitored using spectral reflectance data generated by re-
mote/proximal sensing techniques [28]. However, none of these properties can be
directly measured by RS instruments. Instead, RS data serve as a proxy from
which these properties are estimated [6]. Among the various approaches devel-
oped to retrieve agricultural variables from RS data, the computation of vegeta-
tion indices (VIs) stands out as the most widely studied and applied method for
assessing crop status[29]. This study focuses on two key aspects of crop monitor-
ing: VIs as a representation of a widely used approach (section 1.2), SIF as an
innovative RS signal that enables direct insights into the photosynthetic activity
of plants (section 1.3)

Agriculture studies can now benefit from various RS data provided by differ-
ent passive and active RS systems. In active systems, the sensors emit radiation
toward the desired target and record the reflected energy. Thus, they can be
used anytime under any weather condition. Examples of active sensors are ra-
dio detection and ranging (RADAR) and light detection and ranging (LiDAR),
which provide topographic information about terrain properties and elevation of
ground-based objects. RADAR is also capable of measuring additional surface
characteristics, such as soil moisture. On the other hand, passive sensors record
the reflected solar energy from objects on the Earth’s surface. Examples of passive
sensors are different types of cameras, such as RGB, multispectral, and hyper-
spectral cameras[8], more details in subsection 1.2.1. Most of the existing studies
focus on the optical passive systems because they are prevailingly used to study
vegetation properties [30]. Another application for passive sensors with specific
technical requirements is the study of chlorophyll fluorescence (ChlF); unlike tra-
ditional reflectance-based methods, ChlF sensing techniques capture the energy
emitted by plant leaves when excited by light. Research of RS techniques for
studying ChlF has recently gained increasing interest, as the signal is directly
related to the photosynthetic efficiency [31].

Various RS platforms are currently used in agriculture, including handheld,
aircraft, and satellite, to collect data at different spatial, temporal, and spectral
resolutions [22]. Each has advantages and limitations (subsection 1.2.1). Satellite
imagery, while constantly improving, still lacks the spatial resolution needed for
PA [14]. Manned aircraft offer an alternative for large-scale crop monitoring
with high spatial and spectral resolutions, but the high operational costs and
complexity limit their temporal resolution [32, 33]. Ground-based platforms,
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with high spatial and temporal resolution measurements, are limited in spatial
coverage and can be time-consuming [34].

In this context, Unmanned Aerial vehicles (UAVs) have emerged as flexible,
cost-effective, and promising technology to address these gaps. They offer high
spatial and temporal resolutions that facilitate detailed crop monitoring and dis-
tinction of individual plants in captured images, making them particularly suited
for PA applications and high-throughput phenotyping in breeding programs [24].
This thesis approaches UAV-based crop monitoring through a broad overview
of UAV sensors utilized in PA, providing a general recap of their capabilities,
applications, and processing (section 1.4). Following this, the focus narrows to
investigate two specific UAV systems, a low-cost, widely available sensor, DJI
Phantom 4 Multispectral (P4 MS) (chapter 2) and the SIFcam (chapter 3), a
highly specialized prototype for measuring chlorophyll fluorescence, to evaluate
the sensors’ effectiveness in crop monitoring applications.

1.2 Reflectance based-crop traits proxies
Over recent decades, there has been growing interest in extracting vegetation
biophysical and biochemical properties from remotely sensed reflectance data
[29]. RS applications in agriculture are based on the interaction between inci-
dent electromagnetic energy with pigments, intercellular air spaces, water within
plant leaves, and scattering of reflected energy in the canopy [35]. The leaf re-
flectance signature is well-understood, and typically, for green and healthy plants,
reflectance is low in the visible region (400–700 nm, VIS) due to the strong ab-
sorption for photosynthesis by plant pigments located in the mesophyll, such
as chlorophyll and xanthophylls. Contrarily, in the near-infrared (700–1300 nm,
NIR), electromagnetic radiation is strongly reflected and scattered within the leaf,
as the pigments and cellulose are transparent to these wavelengths [36, 37, 38, 39].
Reflectance in the shortwave infrared region (1300–2500 nm, SWIR) is low due
to water absorption between 1,300-2,500 nm [38, 17, 40], Figure 1.1.

However, the interpretation of canopy-level reflectance remains challenging
due to multiple light interactions between canopy elements and the background.
The canopy reflectance is complex and influenced mainly by the leaf properties
(e.g., ratio of mesophyll cell surface to intercellular air spaces, leaf thickness),
canopy structure, canopy properties (e.g., leaf orientation in a canopy charac-
terized by leaf angle distribution), and the optical properties of the background
soil [41, 42]. Therefore, RS methods try to minimize these confounding effects
and enhance the sensitivity of reflectance data towards a trait or a property of
interest, like the development of VIs.

The computation of VIs is the most widely studied and applied method for
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Figure 1.1: Spectral reflectance signatures of grass measured using an ASD FieldSpec Pro (An-
alytical Spectral Devices) spectroradiometer across visible (400-700 nm), NIR (700-1300 nm),
and SWIR (1300-250 nm) wavelengths. The figure highlights key spectral features, including
chlorophyll absorption in the visible wavelengths and water absorption bands in the shortwave
infrared region.

assessing crop status. Comprehensive recent reviews of VIs have been proposed
by [18, 14, 40, 43]. In the following sections, the evolution of the main types of VIs
is presented. VIs are simple mathematical transformations/combinations of two
or more spectral bands to enhance vegetation spectral signals while minimizing
the confounding effects, viewing geometry, and atmospheric conditions [44, 37].
VIs play a vital role in PA and crop monitoring, offering a simple yet effective
means of assessing crop condition and health. VIs can also serve as a proxy for
vegetation structural, phenological, and biophysical properties, such as leaf area
index (LAI), fractional vegetation cover (FVC), biomass, and chlorophyll content
[45, 46].

First-generation VIs (red–NIR ratio-based and difference-based VIs), such as
the simple ratio (SR), difference vegetation index (DVI), and normalized differ-
ence vegetation index (NDVI), were developed to assess vegetation structural
properties and quantify vegetation growth. These indices are calculated inde-
pendently of soil reflectance properties and are based on the sharp contrast in
reflectance behavior between the red and NIR portions of the plant spectra [47].
Among these indices, the NDVI is the most widely used VI to quantify vege-
tation green biomass, LAI, FVC, plant growth, phenology, fraction of absorbed
photosynthetically active radiation[48, 49, 29] and properties related to evapo-
transpiration [50]. However, NDVI is insensitive to densely vegetated areas and
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sensitive to confounding effects caused by bright soils, atmosphere, and clouds
that may result in erroneous information on crop or plant conditions [51].

Therefore, several improved VIs have been developed in an attempt to address
these shortcomings in NDVI. The Soil Adjusted Vegetation Index (SAVI) and its
variants were proposed to reduce the effect of soil reflectance [52]. While SAVI is
useful in mixed vegetation areas, SAVI may not outperform NDVI in areas with
low soil background or where vegetation is not the dominant land cover [53].

The Enhanced Vegetation Index (EVI) has been developed to mitigate the
effects of NDVI saturation in areas of dense vegetation. EVI accounts for the
non-linear relationship between reflectance and vegetation coverage and inte-
grates blue band reflectance, effectively reducing the atmospheric influence and
soil background noise [51, 54]. [55] suggests that compared to NDVI, EVI is
more robust for monitoring vegetation health and vigor in areas characterized
by significant soil background or atmospheric interference and moderate to high
vegetation coverage [46].

The following improvements included the red-edge part of plant spectra. The
red edge refers to the sharp transition point in the vegetation reflectance spectrum
between the strong chlorophyll absorption in the red band and the high reflectance
in the NIR band. [56]. Red edge has been found to have an excellent correlation
to chlorophyll content. The shape and position of the red-edge region are strongly
influenced by chlorophyll content and LAI; an increase in leaf chlorophyll content
causes a shift in the red-edge position towards longer wavelengths. Conversely,
low leaf chlorophyll content results in a shift of the red edge towards shorter
wavelengths [57]. It has been demonstrated that measures based on the red-edge
position or shape are likewise well correlated with biophysical properties at the
canopy level but less sensitive to spectral noise caused by the soil background and
by atmospheric effects [58]. Red-edge VIs like red-edge chlorophyll index (CIred-
edge) and Normalized Difference Red Edge (NDRE) have been widely used for
estimating leaf and canopy chlorophyll content [59, 60]. In addition, [61, 57, 62]
reported that narrowband red-edge VIs are a powerful alternative to broadband
VIs for LAI estimation.

With the advent of hyperspectral sensors, new narrowband VIs have been
developed and categorized into three main groups: structure, biochemistry, and
plant physiology/stress, as reported by [63]. Structure-related VIs, such as the
modified triangular vegetation index (MTVI2) [64] and the Modified Simple Ra-
tio (MSR), are particularly useful for estimating vegetation structure and are
less susceptible to saturation in dense canopies. Biochemistry VIs include the
Transformed Chlorophyll Absorption in Reflectance (TCARI) [65] for chlorophyll
estimation and the Normalized Difference Nitrogen Index (NDNI) for leaf nitro-
gen content assessment [66]. The Physiology/Stress VIs have expanded beyond
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chlorophyll-based metrics to include other pigments crucial for understanding
plant responses to environmental conditions. Among these, the Photochemical
Reflectance Index (PRI) is related to the xanthophyll cycle [67] and relevant for
studying plant photosynthesis. PRI serves as a proxy for photosynthetic light-use
efficiency by detecting subtle changes in xanthophyll cycle pigments (carotenoid),
which play a key role in photoprotective mechanisms of plants [68, 69].

Narrowband indices have improved the estimations of leaf constituents like
chlorophyll and water content [64] and enabled the detection of biochemicals with
more subtle spectral absorption features such as protein, lignin, and phosphorus
[61].

The estimation of crop properties using VIs is based on empirical relation-
ships between VIs and the variable of interest. Typically, these relationships
are established through correlations between VIs and crop traits derived from
ground experiment data obtained using destructive methods. Alternative ap-
proaches have been developed to build statistical and physical models to describe
the relationship between crop traits and reflective RS data[41, 70].

Statistical methods establish a relationship between the vegetation properties
and the leaf or canopy spectral reflectance signature, or VI, which are sensitive
to the (in-situ) measured variable of interest. These methods rely on spectral,
biophysical, and biochemical measurements taken under various field or labora-
tory conditions across different plant species and growth stages. The accuracy
and range of these measurements significantly influence the validity and transfer-
ability of the derived relationships [71]. Several statistical models are employed
in this context [41]:

1. Linear Regression: The simplest approach is establishing a direct linear
relationship between a VI and the trait of interest [72].

2. Multiple Linear Regression: Extends linear regression to include multiple
spectral bands or indices as independent variables [72].

3. Stepwise Multiple Linear Regression (SMLR): An iterative process that se-
lects the most relevant spectral bands for predicting the variable of interest.
Iteratively adds or removes bands based on their contribution to the model’s
explanatory power until a satisfactory regression is achieved [72]

4. Partial Least Squares Regression (PLS): iteratively computes factors from
linear combinations of multidimensional spectral data, each capturing im-
portant patterns in the data, thus separating noise from meaningful corre-
lations and constituting the prediction function [73].

5. Artificial Neural Networks (ANN): A sophisticated non-linear modeling ap-
proach that captures complex relationships between spectral data (inputs)
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and variables of interest (output). ANN is trained on a learning dataset,
where inputs are linked to specific output variables, which allows ANNs
to emphasize relevant spectral features while suppressing less significant
ones, thereby optimizing the network for the best prediction of variables of
interest [74]

Physical approaches use physical radiative transfer models (RTMs) that can
accurately simulate the interaction (i.e., scattering, absorption, and transmission)
of solar radiation and the canopy from a description of canopy architecture and
the optical properties of its constituent elements. RTMs can simulate the spec-
tral reflectance of vegetation at the leaf or canopy scale. RTMs help to study the
effects of additional perturbing factors (soil background, non-photosynthetic ma-
terials, and observation geometry) on canopy reflectance. Conversely, the canopy
variables that fall into the RTM model parameters can be retrieved from RS re-
flectance, named “inversion mode”. This inversion process aims to minimize the
cost function between the RTM-simulated signal and the RS-observed signal. By
iteratively adjusting model parameters to achieve the best fit between simulated
and observed reflectance, RTM inversion enables the estimation of key canopy
biophysical properties from RS data [70, 6, 41]. Some properties can be estimated
with high accuracy and fidelity, e.g., leaf chlorophyll content, leaf water content,
and LAI [30].

Several RTMs were developed from simple 1D models (e.g., SAIL, SCOPE) to
complex 3D representations (e.g., DART). 1D RTMs simplify vegetation canopies
as horizontally uniform but vertically variable structures and assume vegetation
canopy as a turbid medium with randomly distributed leaf clumps and gaps
(voids), characterized primarily by LAI and Leaf Angle Distribution [75]. While
effective for homogeneous canopies, they may not accurately represent heteroge-
neous or discontinuous canopies [76]. 3D RTMs offer 3D detailed representations
of vegetation structure and use numerous parameters to describe the complex
vertical and horizontal distribution of canopy elements, including leaves, trunks,
branches, water, soil, and atmosphere. Despite their accuracy in simulating di-
rectional reflectance for heterogeneous canopies, the application of these highly
parameterized 3D RTMs in vegetation parameter inversion is limited due to chal-
lenges in acquiring 3D structural data and high computational demands [77, 78].

Among the RTMs, PROSAIL is one of the most widely used in existing stud-
ies. This model is an integration of the PROSPECT leaf-level model and SAIL
canopy-level model and enables simulating spectral and directional variation of
canopy reflectance based on leaf biochemistry (e.g., chlorophyll and water con-
tents), canopy architecture (e.g., LAI and leaf angle) and soil reflectance [79].
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1.2.1 Evolution of optical sensors for remote sensing
The development of VIs has been closely tied to the evolution of satellite tech-
nology since the 1970s. Various VIs have been developed based on broad spectral
bands, making use of multispectral satellite sensor data. Early VIs were esti-
mated from four VNIR broad spectral bands of Landsat 1 in 1972 at 80 m spatial
resolution with bi-weekly revisit times. The advent of broadband Earth-observing
satellites, such as Landsat2 and 3 and the advanced very high-resolution spectro-
radiometer (AVHRR), in the 1970s and 1980s resulted in higher spatial resolution
of 30 m and VIs based largely on NIR/visible reflectance [17, 40]. The early 2000s
saw a significant leap with The Moderate Resolution Imaging Spectroradiometer
(MODIS) aboard Terra and Aqua satellites, with improved spectral resolution
and radiometric characteristics as well as a greater number of spectral bands en-
abling the development of more sophisticated indices like EVI and higher level
data products such as LAI, burned area and GPP [51]. Sentinel-2, launched in
2015, further advanced VI and vegetation product capabilities with its ability to
calculate red-edge VIs for plant pigments, offering weekly to daily observations
at 30 m resolution.

Multispectral data from the above-mentioned satellites have been extensively
used in agriculture studies to retrieve various crop and soil properties, such as crop
chlorophyll content, biomass, and yield [46]. Yet there are significant limitations
associated with the fact that broadband sensors sample only portions of the solar
spectrum and at a wide bandwidth that often masks detailed information crucial
for understanding subtle changes in vegetation composition, biochemistry, and
physiological activity. The sensor’s coarse spectral resolution often constrains
the accuracy of retrieved VI and variables and hinders the detection of subtle
crop stress indicators (e.g., weeds, water, and nutrient deficiencies or excesses)
and complex interactions between fallow, forest, and agricultural land. These
limitations have motivated the inclusion of hyperspectral sensors onboard the
new generation of satellites [80].

Since the 2000s, space-based hyperspectral remote sensing instruments have
been launched. The first instrument was the Hyperion [81], launched in 2000 and
decommissioned in 2017. The spectrometer provided observations in the visible-
SWIR (400-2500nm) with a 30 m GSD. CHRIS (pushbroom Compact High-
Resolution Imaging Spectrometer), launched in 2001, offered high spatial resolu-
tion (17 m or 34 m) images in the visible and NIR wavelengths and unique multi-
angular capabilities for surface reflectance anisotropy characterization [82]. More
recent missions include DESIS (Earth Sensing Imaging Spectrometer), which has
been installed on the International Space Station in 2018 [83], and PRISMA (PRe-
cursore IperSpettrale della Missione Applicativa) (2019) [84]. However, these two
instruments are limited to measuring the visible and near-infrared. The EnMAP
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(Environmental Mapping and Analysis Program) satellite, launched in 2022, fur-
ther expanded capabilities with its prism-based dual-spectrometer system operat-
ing in the visible-SWIR across 224 bands, offering high radiometric and spectral
accuracy and stability [85]. Copernicus Hyperspectral Imaging Mission for the
Environment (CHIME) is expected after 2025 [86] and will also measure in the
Visible-SWIR with a high spectral resolution.

Several techniques were developed to evaluate the instrument performance
for satellite-based spectral imaging; the most common way is to use in-situ mea-
surements of validation networks, such as those provided by RadCalNet and HY-
PERNETS, to characterize both surface reflectance and atmospheric properties.
Challenges persist in relating satellite pixels to limited ground sampling areas of a
few meters. To address this issue, high-resolution airborne imaging spectroscopy
or satellite data from dedicated surveys can provide spatially distributed spectra,
enhancing satellite performance assessments [84].

Spectroscopy from aircraft has rapidly evolved in the last few decades, with
over a dozen operational airborne imaging spectrometers currently in use. Most
of these are limited to measuring the visible and near-infrared spectrum (400 to
1000 nm). Yet, a few airborne imagers have expanded this range to cover 400 to
2500 nm, like NASA’s Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),
the commercial HyMap, developed by Integrated Spectronics Corporation, and
the high-performance airborne imaging spectrometer (HyPlant) developed by the
Forschungszentrum Jülich in cooperation with SPECIM Spectral Imaging Ltd
(Finland) [87].

Despite its outstanding performance, the applicability of hyperspectral imag-
ing in operational agriculture is limited due to limited spatio-temporal coverage
of satellite data, the high cost of the sensors, the complexity of the data acqui-
sition process, and various technical challenges such as high dimensionality, and
large data volumes that require more complex data analyses[85, 88].

Satellite-based multi- and hyperspectral sensors have confirmed good perfor-
mance in agricultural studies, but their widespread application in PA faces several
challenges, including spatial and temporal resolution. Most satellite-based hyper-
spectral sensors offer only medium spatial resolutions (e.g., 30 m for sensors like
PRISMA, EnMAP, and DESIS) [89]. However, many PA applications, such as
crop biomass and yield estimation, typically require high spatial resolution (1-
3 m) [16], while weed mapping demands resolution that is finer than the weed
patches (e.g., 0.05-0.5 m) [90]. Another constraint is the temporal resolution.
The typical two-week revisit cycle of most satellite-based sensors and unfavor-
able weather conditions may hinder the early detection of crop stress, such as
disease or pest.

To fully utilize the rich spectral information provided by HS images and im-
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prove their spatial resolution, data fusion techniques such as pansharpening have
been developed t. This method combines low-resolution HS images with high-
resolution multispectral images or panchromatic images, resulting in images with
both detailed spatial and spectral information. This approach can also be used
to enhance the temporal resolution, like transplanting the temporal repetition
capability of Sentinel-2 MS data into the spectral resolution of HS data to obtain
many fused HS observations with only a few original HS datasets [91, 92].

Although ground-based hyperspectral data can be quickly acquired using spec-
troradiometers (e.g., ASD FieldSpec, Malvern Panalytical, Malvern, UK) and
have been widely employed for observing canopy and leaf-level spectral features,
these measurements are confined to a few numbers of field sites due to their lim-
ited spatial coverage [93, 89]. In contrast, hyperspectral imaging sensors are more
suitable to acquire spatial variations of spectral data over a region. The recent
development of compact and lightweight-setup sensors that can be mounted on
UAVs has further enhanced Hyperspectral applicability and versatility for agri-
culture applications (section 1.4).

1.2.2 Limitations
Despite VIs being widely used, these indices reach a saturation level in high-
density biomass [41, 94]. Saturation is primarily caused by reflectance in the red
band as vegetation canopy closure increases. As the upper layers of vegetation
absorb most of the red light, additional leaves have minimal impact on red re-
flectance. In contrast, NIR reflectance continues to increase beyond certain LAI
values due to multiple scattering effects. This imbalance between the slight de-
crease in red reflectance and the continuous rise in NIR reflectance results in only
slight changes in certain VIs (particularly NDVI) [95, 96, 43].

Over the years, various approaches (section 1.2) have been developed to miti-
gate the saturation effect of VIs [97, 98] proposed to adjust the NDVI by adding
weighting factors to NIR reflectance to compensate for the minimal change in red
reflectance. However, these weighting factors do not account for the influence of
the soil background and alter the dynamic range of the NDVI [97]. Other stud-
ies focused on creating novel VIs that consider more spectral information from
narrow hyperspectral bands. While these new indices achieve greater sensitiv-
ity in high biomass canopies [96], hyperspectral data comes with limitations in
terms of cost, accessibility, computational demands, and complexity due to its
high-dimensional nature.

Reflectance-based VIs are indirect measures of plant properties, producing
relative values that require additional equations to link them to physical units.
Similarly, VIs primarily indicate potential photosynthetic activity by assessing
green leaf area rather than directly measuring the activity of the photosynthetic
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machinery, like electron transport following light absorption [99]. Therefore, most
VIs are not sensitive enough to detect short-term dynamic changes (e.g., hourly
variations) in the photosynthetic process [100, 101]. Plant photosynthesis is a
dynamic process, and its efficiency is highly variable and sensitive to environ-
mental conditions. It adapts to incident irradiance or stress factors such as water
scarcity by altering leaf pigments, e.g., related to the xanthophyll cycle, often
without any detectable changes in reflectance, but readily echoed in changes to
the ChlF emissions [102] (section 1.3). Consequently, VIs are limited in capturing
real-time vegetation responses to stress events (e.g., droughts)

While statistical approaches for crop trait retrieval are straightforward and
fast in computation, they need a large amount of data for calibration and valida-
tion. This makes the empirical relationship constrained by the representativeness
of the calibration dataset and sensitive to acquisition conditions and crop-specific
variables. Consequently, these models have reduced transferability robustness to
conditions other than those in which they were developed [6, 103].

RTMs appear to be useful to overcome some limitations of the statistical
approaches for the retrieval of biophysical and biochemical variables. However,
the use of RTMs is more complex and requires high computational cost in their
calibration step [47]. Also, canopy structure presents challenges for RS data in-
terpretation and radiative transfer model (RTM) parameterization. Factors such
as leaf clustering and orientation can only be represented in 3D RTMs and require
careful parameterization. A key limitation of physical methods is the potential
for different RTM input parameter combinations to yield identical reflectance
spectra, leading to ambiguity in estimating canopy properties from RS data.

1.3 Chlorophyll fluorescence (ChlF)
Chlorophyll fluorescence (ChlF) can be considered as a direct indicator of photo-
synthetic efficiency [104, 105, 106, 107]. The light energy absorbed by chlorophyll
molecules undergo one of three main pathways: used to drive photosynthesis
(photochemistry), dissipated as heat (non-photochemical quenching; NPQ), or
re-emitted as fluorescence [108, 109]. Under optimal physiological conditions, the
major part of the absorbed light (up to 80%) is used for electron transport in pho-
tosynthetic light reactions to generate energy carriers (ATP and NADPH), which
are required to assimilate CO2 in the carbon reduction cycle (Calvin-Benson cy-
cle) [110, 111]. Meanwhile, the remaining absorbed light must be discharged to
prevent overexcitation and potential damage to the photosynthetic apparatus.
NPQ is a photoprotective mechanism in plants that regulates the distribution
of excitation energy between reaction centers and antenna complexes. NPQ is
regulated by the pH of the thylakoid lumen and the aggregation state of antenna
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complexes. The xanthophyll cycle plays a crucial role in NPQ; under high light
intensity, the electron transport chain saturates, and proton accumulation in the
thylakoid lumen tends to decrease lumen pH. The drop of the pH activates the
PsbS protein and triggers the violaxanthin de-epoxidase enzyme, which helps the
conversion of violaxanthin to zeaxanthin (xanthophyll cycle). The binding of pro-
tons and zeaxanthin to light-harvesting antenna proteins causes conformational
changes that result in quenching and heat dissipation [112, 113, 114]. The xan-
thophyll cycle is the only NPQ mechanism that is related to pigment changes.
Thus, it can measured remotely using the PRI. PRI is sensitive to changes in
xanthophyll cycle pigments, reflecting the de-epoxidation state of these pigments
[69].

Figure 1.2: Distribution of absorbed light energy in leaves under steady-state conditions

Accordingly, ChlF is the re-emission of the absorbed light at a longer wave-
length compared to the excitation wavelength [109, 115]. The full emission of the
ChlF spectrum covers the wavelengths ranging between visible to NIR spectrum
of 640–800 nm, with two peaks: one in the red spectral region around 685 nm and
the other in the far-red around 740 nm. Two photosystems are involved: photo-
system II (PS II) contributes to the ChlF emission in red and far-red spectrum
regions, whereas photosystem I (PS I) contributes mainly to the far-red spectral
region [102, 31, 116, 110]. Abiotic and biotic stress factors impact the photo-
synthetic reactions and trigger the dynamic regulation of the two photosystems.
Between the two, PS II response is particularly more dynamic, and changes in
the functional status of PS II are directly and mechanistically reflected in changes
in the emission of ChlF signal [31]. Compared to far-red ChlF, red ChlF is more
strongly correlated to PS II activity and, consequently, to plant photosynthetic
activity. Red ChlF is subject to stronger reabsorption within leaves and canopies
[117]. The reabsorption is caused by the overlapping of the shorter wavelengths
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of the ChlF emission spectrum and the longer wavelengths of the chlorophyll
absorption spectrum [110].

1.3.1 Connection between ChlF and photosynthesis
At the photosystem level, ChlF is directly connected to photosynthesis dynamic
regulation. This relationship can be understood by looking into the mechanisms
of quenching and non-quenching of excited chlorophyll [109]. With the other
dissipative pathway, NPQ energy, ChlF competes with photosynthesis at the
same excitation energy to use the absorbed light. Consequently, any increase in
the efficiency of one mechanism will cause a decrease in the yield of the other two
[102, 105, 109]. Generally, ChlF production is inversely related to photosynthesis,
except in the presence of plant stress and high irradiance conditions. In such
cases, ChlF and photosynthesis both tend to decline (positive correlation), where
NPQ processes are triggered (thermal dissipation) to dissipate excess energy and
prevent damage from harmful radicals formed in those conditions [118, 119, 112].
Hence, measuring the fluorescence emission efficiency can provide information
about changes in the efficiency of photochemistry, as well as heat dissipation
[109].

ChlF emitted from the core of photosynthetic machinery offers a more accu-
rate carbon assimilation estimate and early stress detection rather than normal
reflectance spectra and VIs [115, 102]. ChlF can be used to detect physiologi-
cal strains early before a significant reduction in chlorophyll content and visible
symptoms appear [115, 119]. Early detection allows remedial action before sur-
vival, growth, and productivity are restrained. However, as ChlF is affected by
many factors, it cannot identify a particular stressor but only indicates evident
physiological strain [119].

1.3.2 Measurements of ChlF
In 1834, the first recorded observation of chlorophyll fluorescence was made when
Sir David Brewster, a Scottish preacher, discovered that passing a beam of sun-
light through a green leaf extract of laurel leaves produced a brilliant red light
[120]. He also observed that as the light passed the increasing thicknesses of
the extract, the color of the emitted light changed from red to orange to yellow.
This transition possibly represents the first recorded evidence of reabsorption by
chlorophyll [121].

Changes in the yield of ChlF were first observed in 1960 by [122] and be-
came known as the Kautsky effect, which describes the phenomena of variation
in ChlF yield upon transferring photosynthetic cells from darkness to light. ChlF
first increases rapidly to a maximum (in approx. 1 second) due to the saturation
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of Photochemical quenching (PQ) (close the reaction centers of PSII). Subse-
quently, ChlF decreases to a steady state after a few minutes of illumination due
to the trigger of NPQ to dissipate the absorbed excessive light energy until PQ
is re-established. dissipation)[110]. Actively induced ChlF is the most widely
used indicator of the functional status of PS II on the leaf level [112]. ChlF mea-
surements made their move towards field applications with the development of
pulse amplitude-modulated (PAM) fluorometry. PAM uses saturating pulses to
close the PS II reaction centers and induce the max ChlF emission [123]. PAM
fluorometry has facilitated the study of leaf photosynthesis and helped clarify
the link between ChlF and photosynthetic CO2 assimilation [107]. The handheld
Mini-PAM device offers rapid leaf fluorescence assessments, while the stationary
Monitoring-PAM enables continuous field measurements. However, upscaling
this method from the leaf to canopy level is limited by the close range needed to
apply the saturating flashes[124]. To address these challenges, the light-induced
fluorescence transient instrument (LIFT) has emerged, allowing fluorescence mea-
surements in terrestrial vegetation from several meters above the canopy (up to
50 m). LIFT uses a pulsed laser, and in later versions of LED, an excitation signal
is applied with variable duty cycles, resulting in a fluorescence transient that is
fitted with a model to extrapolate the maximum fluorescence [125, 126]. Lift is
integrated into automated systems for phenotyping in high spatio-temporal reso-
lution [127] to investigate the effect of elevated CO2 on photosynthetic dynamics
and growth patterns [128].

1.3.3 Remote sensing of SIF
RS of solar-induced chlorophyll fluorescence (SIF) is based on the passive mea-
surement of ChlF induced by the absorption of sunlight. SIF is an innovative
RS signal that can serve as a real-time proxy of photosynthetic activity and
its dynamics under natural illumination at the leaf, canopy, ecosystem, or even
global scale [107, 129]. However, measuring SIF is challenging as, under solar
illumination, the SIF signal is always superimposed on the reflected light. Since
the SIF emission contribution to the signal detected by a remote sensor is weak
and typically constitutes 1–5% of the vegetation’s reflected radiance in the near-
infrared [102, 130, 131], the decoupling of the two signals is challenging. SIF can
be detected passively by exploiting specific absorption features in the solar or the
Earth’s atmospheric spectrum, where irradiance transmission through the atmo-
sphere is strongly reduced, and SIF contribution to reflected radiation is relatively
stronger [102, 132, 129]. An important algorithm for measuring SIF is the Fraun-
hofer line discriminator/depth (FLD). The FLD relies on two flux measurements:
incident solar irradiance and the apparent reflected radiance (termed ”apparent”
as it includes SIF) inside and outside of the absorption feature [116, 102, 133].

15



Typically, the solar Fraunhofer lines (SFL) Fe (758.8 nm) and KI (770.1nm)[134]
or the Earth’s two telluric oxygen absorption features O2B (687–692 nm), and
O2A (759–770 nm) bands are used due to their spectral proximity to the SIF
emission peaks [129]. The O2 absorption bands were used more than the Fraun-
hofer lines feature because these bands are wider and deeper and do not require
as high spectral resolution as SFLs (<0.1 nm). Nonetheless, SIF retrieval in
the O2 absorption bands is more complex than in the SFL, as atmospheric and
surface factors significantly affect band depth. Atmospheric correction is nec-
essary to separate the little contribution of SIF at the top of the atmosphere
from these factors. In contrast to the O2 bands, SFLs offer the advantage of
being unaffected by terrestrial atmospheric absorption, allowing direct observa-
tion of fluorescence-induced filling-in without complex atmospheric corrections.
[31, 135]. Most of the approaches in the literature on SIF retrieval are based on
the principle of Fraunhofer Line Depth (FLD), proposed by [133]. Nevertheless,
these FLD methods are different in their assumptions of the spectral behavior of
the SIF and reflectance spectra and how they measure band depth. While the
Simplified FLD assumes that reflectance and fluorescence are spectrally constant
inside and outside the absorption band [133], the modified FLD (3FLD) supposes
that they vary linearly [136]. The improved FLD (iFLD) assumes a non-linear
relationship and uses interpolation (cubic or spline to estimate reflectance within
the absorption band [137]. Spectral fitting methods (SFM) [138, 102], have been
proposed for more robust and accurate retrieval, defined as methods in which
both reflectance and fluorescence are determined by spectral curve fitting.

The advancement of passive RS technology and prototypes has made global re-
trievals of SIF achievable using different atmospheric chemistry satellites, such as
the Greenhouse Gases Observing Satelite (GOSAT) [134], the Global Ozone Mon-
itoring Experiment-2 satellite (GOME-2) and the Orbiting Carbon Observatory-2
(OCO-2) [139]. Most recently, moderate spatial resolution (3.5x7 km) SIF re-
trievals with a daily revisit time space were achieved with the TROPOspheric
Monitoring Instrument (TROPOMI) onboard the Copernicus Sentinel-5P mis-
sion [140]. These studies have recognized the potential of satellite-based SIF to
better understand the photosynthetic functioning of vegetation at a large scale.
To further explore the potential of SIF, the European Space Agency plans to
launch the FLuorescence EXplorer (FLEX) satellite in 2026. FLEX will be the
first satellite mission dedicated to globally mapping vegetation fluorescence at an
unprecedented spatial resolution of 300 m. It will allow the retrieval of the full
spectrum of fluorescence with a moderate temporal and high spatial resolution
globally available [111]. Complementing the satellite observations, airborne sen-
sors, often imaging spectrometers, allow mapping SIF over plant canopies at local
and regional scales with an intermediate spatial resolution [31]. The airborne SIF
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measurements have also evolved as a key component of the calibration and val-
idation of the spaceborne sensors[132]. Ground-based measurements provided
the first concise comparison of fluorescence emissions across a range of tempo-
ral scales and diverse plant functional types[141]. They are essential for scaling
up and understanding energy-matter interactions from leaves to top of canopy
levels (TOC) and calibration and validation of airborne and UAV observations
[142, 132]. In addition, the combination of flux observations and SIF on two-
ers plays a crucial role in the accurate estimation of biosphere-atmosphere CO2

exchange within the global carbon cycle.

1.3.4 Challenges
The technology to measure SIF and data availability far outpaces the growth in
mechanistic understanding of SIF dynamics and their relationships with photo-
synthesis and our capacity to interpret the acquired data in meaningful applica-
tions. These issues are due to different challenges, which can be summarized into
three main factors: measurement instrumentation limitations, scaling issues, and
interpretation complexities [116, 143].

There is currently no orbiting satellite designed explicitly to measure SIF
from space directly until FLEX is launched. In the meantime, satellite SIF has
been retrieved from other instruments designed for atmospheric chemistry studies
and recently from TROPOMI. Existing SIF products are restricted to either
low spatial resolution, incomplete global coverage, low temporal resolution, short
temporal coverage, high-precision errors, or a combination of these. This makes
them inadequate for addressing the information needs of most agricultural and
forestry management or long-term monitoring and quantifying the global gross
primary productivity of global ecosystem production (GPP) and carbon budget
[111, 144, 143].

Despite the widespread use of satellite-derived SIF to investigate GPP, there
is still a gap in understanding the SIF-GPP relationships at different spatial
and temporal scales, which hinders the use of SIF to assist in estimating GPP
on large scales. Validating the SIF derived from satellites with eddy covariance
(EC) based GPP measurements is challenging due to the inconsistencies in the
footprint coverage. Existing satellite SIF products spatial resolution (≥ 7 km2)
does not match with the EC towers footprints of around 0.5 to 1 km. Therefore,
obtaining high-resolution SIF data is imperative for studying the relationship
between satellite SIF and tower-based GPP [145, 146].

At the field and landscape scale, airborne imaging spectrometers [147, 148]
offer intermediate-scale observations bridging the SIF measurement from small-
scale field to satellite observations. However, validating airborne SIF products
is vital. Ground-based SIF systems aid in validation, but comparing them to
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airborne SIF is challenging due to footprint differences [149, 150]. Also, periodic
and campaign-based use of airborne sensors is costly, limiting their applicabil-
ity for large-scale or continuous SIF mapping [132]. Although airborne sensors,
e.g., HyPlant, enable SIF observations with pixel sizes of approximately 1 m,
finer spatial resolution is required for studying the impact of vegetation structure
on the spatial heterogeneity and angular anisotropy of the SIF signal. Ground-
based setups offer small field-of-view (FOV) and limited spatial coverage due to
their proximity to the measured targets (0.1 -10 m above the canopy). They
can only monitor SIF signals from a few individual plants, requiring upscaling
schemes for use on larger scales [150, 151]. In addition, proximal point measure-
ments have limited suitability when investigating different canopy structures,
where the signal is always an integration of the FOV. The interpretation of SIF
signals into meaningful information and new applications require a fundamental
understanding and a quantitative description of the processes linking measured
chlorophyll fluorescence with photosynthesis. Although the relationship between
fluorescence and photosynthesis at the leaf level is well understood using active
fluorescence techniques[107, 105], the relationship between passive fluorescence
and photosynthesis at the canopy level is more complex [149]. SIF observed at
TOC is affected by canopy structure, biochemical properties, viewing geometry,
and within-canopy light level [152, 131, 153]. TOC SIF is only a portion of the
total emitted SIF from individual leaves due to reabsorption and scattering and
the interactions of the incident photosynthetically active radiation (PAR) with
canopy elements and soil. SIF at 760 nm (far-red SIF) is scattered more and
reabsorbed less than SIF at 687 nm (red SIF) (overlap with a wavelength range
of the ChlF absorption spectrum). Thus, the portion of SIF reaching the sensor
is higher for far-red SIF than for red SIF [154]. Likewise, variability of surface
illumination within the canopy affects retrieved SIF, such that sun-exposed leaves
produce higher SIF due to increased incident radiance compared to shaded leaves
under diffuse illumination [131, 153].

As a result, SIF measured at the TOC SIF is different from SIF measured at
the leaf level and cannot be directly used to detect variations in plant physiology
and make comparisons of SIF acquired by different sensors at varying scales chal-
lenging. In an attempt to solve the ChlF scaling issue from leaf to canopy scale,
[155] tackled the canopy structure interference and introduced the fluorescence
escape fraction (Fescape) as the ratio of apparent SIF at the canopy level to SIF
at the leaf level.

Recent approaches utilize canopy reflectance data acquired under identical
conditions of the SIF measurements to explore the F760 scattering based on the
spectral invariant theory [156]. [152] developed a method to correct the F760 for
scattering effect by defining Fescape as the ratio of NIR TOC reflectance to canopy
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interception. Building on this, the authors [157] developed the near-infrared
reflectance of vegetation (NIRv) index as NIR reflectance multiplied by NDVI
and uses the fraction of absorbed photosynthetically active radiation (fAPAR)
as a proxy for canopy interception. NIRv (Fescape = RNIR · NDV I

fAPAR
) is used as

a proxy of the fraction of photons that escape from the canopy in near-infrared
wavelengths. However, this approach is not universally valid as it is not fully
consistent with radiative transfer theory in certain estimation steps. Following a
similar concept, the authors [156] proposed the fluorescence correction vegetation
index (FCVI), calculated as the difference between NIR reflectance at 770 nm
and the average VIS reflectance. Normalizing TOC F760 by FCVI and PAR is an
estimate of F760 emission efficiency. The FCVI showed consistency with spectral
invariant radiative transfer theory. Nevertheless, FCVI is unsuitable for very
sparse vegetation canopies as it underestimates the soil contribution.

Recent advancements in radiative transfer modeling (RTMs) have demon-
strated the potential to study light-canopy interactions and to resolve the leaf-
to-canopy SIF scaling issues [118, 152, 158]. RTMs provide a way to predict
scattering if the canopy biochemical and biophysical variables are predefined.
However, these models require in-situ measured data for validation and as input
for parameterization.

1.4 Uncrewed Aerial Vehicles (UAVs):
Enhancing remote sensing capabilities

Initially, UAVs were used for hobby model pilots and military and civil surveil-
lance roles; however, in the last 15 years, their use has rapidly expanded to other
applications (commercial, scientific, agricultural, etc.). In the early 2000s, the
advent of digital technologies and advanced sensors enabled a broader adoption
of drones for agricultural use. Modern drones are capable of collecting high-
resolution data on various aspects of crop management [159, 160].

UAVs are now very commonly used in RS applications for PA, offering high
spatial and temporal resolution and broader coverage of the field, which enable
crop monitoring, yield estimation, early disease and pest detection, weed man-
agement, and water stress assessment [161, 160]. Machine learning is often used
in UAV-based applications in PA, mainly for prediction and/or identification pur-
poses due to its capability to address linear and nonlinear problems and handle
large amounts of data. Both unsupervised and supervised learning techniques are
being exploited via clustering, classification, and regression methods [162, 163].
Classification methods are widely used for weed mapping and stress detection.
The most popular and precise classification technique used for this purpose is
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Convolutional Neural Networks (CNNs) [164], with some studies reporting up to
98% mean accuracy in the detection of broadleaf and grass weeds among soil and
soybean using RGB imagery acquired from the Phantom DJI 3 [165] and accuracy
rates exceeding 90% in detection the grape disease and infected areas in vineyards
using RGB images. Regression methods and statistical models are employed to
estimate VIs from UAV-based data and use them to predict/estimate features like
nitrogen content, LAI, and biomass[32]. [166] found that the Random Forests al-
gorithm has shown very good performance in estimating leaf nitrogen content
(R² up to 0.79) from different winter wheat varieties using images acquired using
the five-band multispectral camera.

Not only can UAVs be used for monitoring and detection purposes but also in
direct interventions on crops, including precision spraying, fertilizer applications,
and pesticide and herbicide spraying [160]. Studies have shown that drone-based
spraying offers significant advantages over traditional methods, including reduced
fertilizer and pesticide consumption and enhanced application precision, allowing
for more uniform and targeted nutrient distribution. This increased precision
translates into better nutrient absorption by plants and reduced fertilizer leaching
[167, 168].

In agriculture applications, various types of sensors can be mounted on UAVs.
The main on-board sensors are visible light sensors (RGB), multispectral sensors,
hyperspectral sensors, LIDAR, and thermal sensors [169]. However, the need for
low payload capacity and the utilization of small platforms pose several limita-
tions to the selection of the sensor(s) to be used. Sensors must meet key criteria,
including low weight, low energy consumption, and small size [170]. Thermal
imaging provides canopy temperatures that can reveal variations in stomatal
conductance as an indicator of the plant response to the water availability and
transpiration rate. Thermal RS has proven a reliable way of detecting the phys-
iological status of plants under different biotic and/or abiotic stresses, yet data
interpretation is affected by environmental conditions [171]. Over the past years,
a variety of lightweight hyperspectral sensors for UAVs, including both pushb-
room and snapshot types, have been developed and placed on the market, along
with some developed research initiatives and projects [172]. Hyperspectral sensors
were utilized successfully in plant phenotyping to extract structural and physio-
logical plant properties, crop disease pathology, plant stress, and yield prediction
[173]. However, their application in UAV agriculture is still confined by the high
cost of the lightweight hyperspectral sensors and challenging data processing to
retrieve the desired products [174].

On the other hand, RGB sensors, commonly used in low-cost drones and
cameras due to their lightweight and affordability, are typically employed to vi-
sually inspect crop health and detect any obvious issues, such as pests or diseases,
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due to their superior spatial resolution. RGB is the most used sensor in image-
based precision phenotyping to retrieve plant heights and assess plant number
or density, estimate field emergence, and yield prediction [173]. However, RGB
is limited in its ability to detect changes in vegetation health and productivity
due to the lack of spectral range [175]. LIDAR has also achieved good results
in estimating geometric properties like height and biomass. The application of
LIDAR is limited by a large amount of data processing[175].

In contrast, multispectral sensors have emerged as a persuasive tool that
strikes a delicate balance between applicability and affordability. These sensors
can provide multiple spectral bands from visible to NIR with centimeter-level spa-
tial resolution. In addition, their low cost, compact dimensions, and fast frame
imaging make them well-suited for UAV applications [176, 177, 178]. Analysis
of UAV-based multispectral data has shown to be successful in estimating LAI,
nutrient uptake, chlorophyll content, yield prediction, and early detection of crop
stress and diseases [24, 12].

UAVs can also be equipped with passive sensors designed to measure SIF. To
our knowledge, only a few studies have demonstrated the retrieval of SIF using
UAV platforms, which will be discussed in section 3.1.

Raw snapshot image data taken by UAV platforms are not ready to extract
crop physiological properties. While standardized workflows are still evolving, a
general approach to process imagery acquired by multispectral sensors mounted
on drones typically involves the following key steps:

1. Preprocessing of raw images mainly includes sensor-related corrections (noise
correction, vignetting correction, and lens distortion correction) to extract
geometrically consistent at-sensor data from the raw data. Radiometric cor-
rection is used to convert the raw sensor digital numbers (DN) into spectral
radiance or reflectance [176].

2. Image stitching and 3D reconstruction: The most common method employs
photogrammetric techniques, following these steps [179, 180, 32]:

(a) Image alignment: match and align preprocessed images using ad-
vanced computer vision and photogrammetric algorithms. Aerial tri-
angulation and camera calibration are initially performed to recover
camera poses and scene structures. The most commonly used set of
algorithms for this purpose is summarised under the term Structure
from Motion (SFM). The main advantage of SfM is that it does not re-
quire initial values of camera poses or information regarding the scene
structures [181]

(b) 3D point cloud generation: Creation of a dense 3D point cloud repre-
sentation of the surface.
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(c) Mesh and Digital Elevation Model (DEM) creation: Generation of 3D
mesh models and DEMs, including Digital Terrain Models (DTMs) or
Digital Surface Models (DSMs).

(d) Orthomosaic production: Creation of geometrically corrected aerial
images with uniform scale using the 3D models.

Specialized software tools have been developed to enable faster data process-
ing. For example, Agisoft Metashape (Agisoft LLC, St. Petersburg, Russia) and
Pix4D (Pix4D, Prilly, Switzerland) are commonly used for processing and fusing
multispectral data to create 3D models and orthomosaics.

1.5 Research objectives and thesis structure
The main objective of this thesis is to extend the application of optical UAV-
based remote sensing in precision agriculture and plant monitoring. The research
focuses on developing novel workflows to create high spatial resolution maps for
detecting changes in crop performance and physiological status using both UAV-
based multispectral and solar-induced fluorescence (SIF) imaging sensors. More
specifically, the research objectives were formulated as follows:

1. To assess the potential of a high-resolution DJI Phantom 4 multispectral
UAV-based imaging system in detecting and quantifying the short-term
impacts of biochar treatments on spelt crop performance at various growth
stages, and developing a comprehensive data processing workflow from raw
imagery to reflectance maps and vegetation indices (VIs) (chapter 2).

2. To develop and validate an optimized workflow for processing data from
the SIFcam, a novel UAV-based SIF imaging system, to generate centime-
ter resolution maps of far-red solar-induced chlorophyll fluorescence (F760)
on the field scale. This includes assessing the accuracy, stability, and com-
parability of the retrieved F760 maps with the ground and airborne-based
F760 while quantifying associated uncertainties and evaluating the system’s
performance on a moving UAV platform (Chapter 3).

3. Evaluating the robustness and plausibility of SIFcam’s processing chain
under different canopy structures by comparing two types of winter wheat
varieties that were bred before and after the green revolution in terms of
their ChlF and spectral data (Chapter 4).
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Chapter 2

Reflectance-based vegetation
indices from a low-cost
multispectral sensor

This chapter is partially based on the author’s published article:

S. Salattna, J. Bendig, C. Kuchendorf, C. Jedmowski, and U. Rascher, “Monitor-
ing Crop Seasonal Development under Biochar Treatment with Unmanned Aerial
Vehicle (UAV)-based Multispectral Imagery,” In Proceeding Wissenschaftlich-
Technische Jahrestagung der DGPF in Publikationen der DGPF Band 31, München,
Germany, 2023, DOI: https://doi.org/10.24407/KXP:1841079561 .

The table below indicates the origin of different sections within this chapter:

Newly added Adapted † Original

Figure 2.2, Fig-
ure 2.4,Figure 2.6,
Figure 2.5 ,

section 2.1, subsection 2.2.6,
section 2.3,section 2.4, Fig-
ure 2.3

everything else
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2.1 Introduction (†)

In the context of mitigating climate change and adapting to the loss of soil fertil-
ity, there is a particular interest in assessing the impact of biochar-facilitated fer-
tilizer application in agroecosystems [182]. Biochar is a black carbon-rich product
obtained through the pyrolysis of various biomass, for example, wood, manure, or
crop residues, under oxygen-free or oxygen-deficient conditions [183, 184]. Biochar
ameliorates soil physical, chemical, and biological properties [185, 186, 187].
Biochar amending to soil has shown beneficial results in terms of enhancing soil
fertility, structure, water holding capacity, water availability to plants, organic
carbon content, and microbial performance [188, 187]. Consequently, biochar
was reported to sustain crop productivity significantly [189, 190] by improving
nutrient availability while simultaneously reducing leaching losses [191].

Biochar is recalcitrant carbon that degrades slowly in soils and can take thou-
sands of years to be fully degraded [192]. Thus, biochar can serve as a long-term
carbon sink that can contribute to soil C sequestration and reduce greenhouse
gas emissions, which can mitigate the impact of climate change [191, 193]. An-
other reported benefit of biochar is its potential for the recuperation of degraded
and contaminated soils through the long-term adsorption of heavy metals [194].
However, the final effect of biochar application is strongly dependent on the crop
types, soil types, and biochar types, including feedstock sources, pyrolysis tem-
perature, and the particle size of biochar [195, 196]. A large variation in plant
productivity responses to biochar application in soil was documented in previ-
ous studies due to the high heterogeneity of biochar properties, soil conditions,
experiment designs, and environmental conditions [197]. [198] documented that
biochar likely improves crop production in highly degraded and nutrient-poor
soils, while its application to fertile and healthy soils does not always increase
crop yield.

Despite the growing literature investigating the effect of biochar on total crop
productivity, the effects of biochar on crop development over the growing sea-
son have received much less attention. The spatio-temporal information pro-
vided by visible and NIR UAV images can reveal variability in crop performance
due to the presence of biochar within the agricultural soils. So far, the authors
[199, 200] conducted two studies that investigated the advanced perspectives of
optical UAV (10 channel MicaSense RedEdge-M) RS in combination with in-situ
ground measurements of crop traits for monitoring the crop growth dynamics
affected by century-old biochar enrichment in PA. In the first study, he assessed
chicory growth over 11 biochar-enriched patches and adjacent reference soils, find-
ing that biochar significantly enhanced canopy cover and leaf lengths but nega-
tively impacted plant greenness and increased crop stress without affecting yield.
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In a second study focused on winter wheat, seven RGB and six multispectral
flights revealed a significant positive effect of biochar on canopy cover (p-value
= 0.00007) and early-season crop development (p-values < 0.01), although no
impact was noted by the end of the season. Both studies highlighted that factors
such as soil variations are more critical than biochar presence in influencing crop
health and yield variability.

To date, short-term biochar effects on plant systems using high-resolution
UAV-based data at the canopy level have yet to be addressed. Our study aimed
to describe the ability to use the small-scale, high spatial-resolution UAV system
to detect the differences between biochar fertilized fields and control fields and
to investigate at which development stage those differences can be quantified or
detected. Due to the high fertilization standard of the study field, the expected
impact of biochar-facilitated fertilization on crop growth may be low but possi-
bly detectable using high spatial-resolution UAV imagery. The available imagery
source was VNIR multispectral data collected over one crop growth season. This
study proposes a data processing workflow, from raw imagery to creating a re-
flectance map and extracting VIs. The main question the study aimed to answer
is: Can the DJI P4MS-based VIs capture the impact of the short-term biochar
treatments on spelt (Triticum aestivum ssp. spelta L.) crop performance at the
canopy level?

2.1.1 Methods and tools

2.1.1.1 Site description

The study area was a farmer’s field of approximately 21 hectares cultivated with
spelt, located in Germany (latitude: 50° 58’55.1”N, and longitude: 6°25’50.4”E
) (Figure 2.1). Spelt seeds were sown in December 2022. The Muencheberg soil
quality rating (SQR) of the area is >85, Colluvisol over Chernozem-parabraunerde.
Spelt development was monitored during the experiment from the Booting stage
to the senescence. The experimental treatment consisted of three biochar-enriched
stripes with a diameter of 6 m along the field’s length. Each stripe was treated
with 1 ton/ha of terra preta biochar and 180 kg nitrogen/ha, 90 kg N/ha, and
40 kg N/ha for stripes T1, T2, and T3, respectively. Apart from these biochar-
enriched stripes, the experimental field was exposed to homogeneous agricultural
practices, and the soil was treated with organic minerals of 180 kg N/ha, Fig-
ure 2.2. Three 3 ×100 m plots (red stripes in Figure 2.1) were selected inside the
biochar-enriched stripes, at least 1.5 m from the border of each stripe, to avoid
gradient effects at the edge of the treatments. Subsequently, three plots of 3 ×100
m (black stripes in Fig. 1) were selected as reference soil areas within a distance
of approximately 3 m from the biochar-enriched stripes to ensure comparable soil
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properties while preventing effects from mixing of biochar and reference soil parti-
cles. A set of ground control points (GCPs), consisting of five 0.3×0.3 m targets,
were placed in the field for geo-referencing UAV images. GCP coordinates were
measured with a real-time kinematic (RTK) global navigation satellite system
(GNSS) (Hiper VR, Topcon Positioning Systems, Inc., Tokyo, Japan) with an
overall accuracy of 0.01 m.

Figure 2.1: Map of the experimental pairs (reference vs biochar plots) in the spelt field in Ameln-
Titz, Germany. Background image corresponds to the Red-Green-Blue (RGB) orthomosaic
captured by UAV on 02 June 2022

Figure 2.2: Biochar-enriched soil strips in the field. The dark stripe: biochar-enriched. The
lighter areas: no biochar (*)
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2.1.1.2 Phantom 4 Multispectral

A multispectral RS dataset was acquired during the 2022 growing season using
the multispectral camera mounted on the DJI Phantom 4 Multispectral (P4M).
The P4M camera has six bands, including one RGB sensor and five monochrome
sensors capturing blue (450 nm central wavelength), green (560 nm), red (650
nm), red-edge (730 nm), and near-infrared (840 nm). Each spectral sensor has a
global shutter and 1600×1300 pixels image resolution. In addition, the P4M is
equipped with a band-by-band incident light sensor, which allows the irradiance
measurement for each band during flight. The P4M integrates a built-in DJI
Onboard D-RTK module that provides real-time and centimeter-level positioning
accuracy.

2.1.1.3 Data acquisition

The UAV was flown at 50 m above ground level (AGL) with an airspeed of 4.25
ms−1. The forward and side image overlaps were 75% and 65%, resulting in a
ground sampling distance (GSD) of 0.035 m. During data collection, six flights
were performed between May and July 2022 in clear sky conditions and between
12:00 to 15:00 h local time. For each flight, a set of Lambertian reference panels
with known hemispherical-conical reflectance factors was placed next to the field
and recorded at flight altitude to enable the generation of reflectance maps in the
postprocessing.

2.2 Data processing and analysis

The data processing workflow, including data processing and VIs extraction (Fig-
ure 2.3. First, the individual images were corrected for the vignetting effect
(subsection 2.2.1). Then, raw digital numbers (DNs) were corrected for sensor
gain and exposure time, yielding normalized DN values (subsection 2.2.2). These
two steps were performed on the individual images using an in-house developed
Python code. The corrected images were processed using the Metashape pro-
cessing workflow (Agisoft LLC, St. Petersburg, Russia), which included GCPs
for georeferencing orthomosaics as final products. The empirical line method
(ELM) was applied for atmospheric correction and to create reflectance maps
using a Python code (subsection 2.2.4). Several VIs were then calculated from
the reflectance maps using the raster calculator tool in QGIS (subsection 2.2.5).
In addition, a mask was applied to the VIs maps in QGIS to exclude soil pix-
els before conducting the statistical tests to examine the difference between the
reference and biochar plots ,subsection 2.2.6.
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Figure 2.3: Overall multispectral UAV-image processing workflow (†)

2.2.1 Vignetting correction
Vignetting is the effect of the radial falloff in pixel values, which results in darker
areas near the edges of images [201]. The vignetting effect, V(x, y), is typically
modeled as a high-order polynomial (Equation 2.2). It assumes zero vignetting,
V(x�, y�) = 1, at the image center:

r =
√

(x− xv)2 + (y − yv)2 (2.1)

V (x, y) = 1 + α1r + α2r
2 + α3r

3 + α4r
4 + α5r

5 + α6r
6 (2.2)

Where r is the distance of the pixel (x, y) from the center of the vignette
(x�, y�), which can be obtained by Equation 2.3, matrix � shows the polynomial
coefficients for the vignetting correction, which can be found in the EXIF/XMP
metadata of the images.

Icorrected(x, y) = [I(x, y)− BL(x, y)]× V (x, y) (2.3)
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Figure 2.4: Comparison of raw (DN) and corrected (DNcorrected) imagery, displaying the effects
of radiometric and vignetting corrections on image quality (*)

Where BL(x, y) is the normalized black level value, which can be found in
EXIF/XMP metadata.

2.2.2 Radiometric correction (†)

The radiometric correction is a crucial step in the processing flow. When an image
is captured, raw data are stored as DNs, representing the radiant energy received
by each pixel. During radiometric calibration, DNs are converted to radiance and
usually later the top of canopy reflectance to enable comparisons between datasets
acquired under differing light conditions or with different sensors [202]. Radiance
in absolute physical units cannot be calculated for DJI multispectral images as the
sensor is not radiometrically calibrated by the manufacturer. Instead, normalized
DNs are calculated using Equation 2.4, as described in the Multispectral Image
Processing Guide provided by DJI [203]:

DNcorrected =
(Icorrected × 1e6)

sensor gain× camera exposure time (2.4)

DNcorrected is the normalized DN, and Icorrected is the image intensity after cor-
rections for vignetting and dark current, sensor gain, and the camera exposure
time can be found in XMP/EXIF meta. Figure 2.4 clearly shows the enhanced
contrast, uniform illumination, and overall data integrity achieved through vi-
gnetting and radiometric corrections.
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2.2.3 Mosaic generation

The individual images, corrected as described in subsection 2.2.1 and subsec-
tion 2.2.2, were imported into Agisoft Metashape to automate the image post-
processing and generate the mosaic. The software automatically recognized the
characteristics of the used multispectral camera and made the necessary geomet-
ric corrections (e.g., lens distortion). As the next step, the GPS metadata of
the GCPs was used for geo-positioning and photogrammetric reconstruction, and
finally, the software generated the 5-band orthomosaic and digital surface model.

2.2.4 Reflectance

ELM is commonly used for atmospheric correction and for generating surface
reflectance data. The method assumes a linear relationship between DNs or
radiance values in an image and surface reflectance [204]. Therefore, one or more
reflectance calibration panels of known reflectance and Lambertian properties
must be visible in the aerial imagery to apply the method. The UAV data for
this study was acquired simultaneously with nine standard reflectance panels
(2%, 3%,4%,5%, 6%, 12%, 24%, 40%, and 63%). First, the reference panel ROIs
were manually extracted from the central part of each panel in the orthomosaic for
every flight in QGIS. Then, the reference panel measurements were obtained band
by band using a Python script due to a displacement between the bands in the DJI
P4 multispectral imageries. A mask was also applied for each orthomosaic within
the Python script to mask out the saturated panels for each spectral band. Then,
ELM was applied to the orthomosaic to create a reflectance map as described in
[205].

2.2.5 Calculation of multispectral VIs

VIs allow monitoring spectral changes related to, e.g., crop structure, above-
ground biomass, crop health, and weed presence [206]. The normalized difference
vegetation index (NDVI) is a good indicator for green biomass, with the well-
known shortcomings of saturating in closed canopies and being influenced by soil
reflectance. The enhanced vegetation index (EVI) was proposed to address this
issue by adjusting for atmospheric conditions and canopy background noise using
a blue band. The normalized difference red edge index (NDRE) was identified
as a good proxy of nitrogen concentration. The chlorophyll index red (CI-red)
and the simplified canopy chlorophyll content index (s-CCCI) are often used to
evaluate canopy chlorophyll and nitrogen content. The optimized soil-adjusted
vegetation index (OSAVI) and chlorophyll vegetation index (CVI) are indicative
of leaf chlorophyll content. Formulae and references are displayed in Table 2.1
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Table 2.1: VIs used in this study and their Formulae

Index Abbr. Formulae Reference

Normalized Differ-
ence Vegetation In-
dex

NDVI NIR− Red
NIR+ Red [207]

Normalized Differ-
ence Red Edge

NDRE NIR− RE
NIR+ RedEdge [208]

Enhance Vegetation
Index

EVI 2.5× NIR− Red
NIR+ 6× Red− 7.1× Blue+ 1

[209]

Optimized Soil Ad-
justed VI

OSAVI 1.16× NIR− Red
NIR+ Red+ 0.16

[210]

Chlorophyll Vegeta-
tion Index

CVI NIR
Green × Red

Green [211]

Chlorophyll Index
Red

CI-red NIR
Red − 1 [212]

Simplified Canopy
Chlorophyll Con-
tent Index

s-CCCI NDRE
NDVI [213]

2.2.6 Statistical Analysis (†)

A statistical analysis was performed to assess the differences between the spelt
development across biochar-enriched and reference soil based on the estimated
VIs. Pixel values were extracted from each treatment and its adjacent reference;
see the figure for the treatments Figure 2.1 and references illustration. Given
the large size of the treatment and reference patches, the number of observations
(pixels) in each ROI was enormous. Therefore, traditional statistical methods
could be overly sensitive to small differences. Analysis of Variance (ANOVA) and
Tukey-Kramer post hoc test [214] were initially used and revealed, as expected,
a significant difference at a very high level, which proved inconclusive due to the
large sample size. Therefore, Cohen’s d-effect size, a measure of standardized
mean difference [215], was employed to quantify the magnitude of the differences
between the biochar-enriched and reference plots. The effect size is interpreted
using the classification developed by [215], Table 2.2
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Effect size (D) Interpretation
0.00 ≤ D < 0.20 Ignored
0.20 ≤ D < 0.50 Low
0.50 ≤ D < 0.80 Medium
0.80 ≤ D < 1.30 Large

Table 2.2: Interpretation of Effect Size (D)

2.3 Results and Discussion (†)

The EVI, serving as a proxy for vegetation health and vigor, effectively captured
the temporal and spatial variations in spelt growth, development, and senescence
from mid-May to mid-July 2021. The spatial maps (Figure 2.5) and boxplots
(Figure 2.6) illustrate these patterns, providing comprehensive insights into the
phenological development and the differential impacts of biochar and nitrogen
treatments (T1, T2, T3) relative to references (R1, R2, R3) throughout the grow-
ing season.

The temporal trend of EVI aligns well with key phenological stages of spelt,
including heading, flowering, grain filling, and ripening. EVI increased rapidly
from mid-May to early June, corresponding to the heading stage, as the spelt
head emerges and the plant reaches maximum height and leaf area. The peak
EVI values observed in mid-June align with the flowering stage, as the spelt
achieves maximum greenness and biomass. While EVI is expected to gradually
decrease from mid-June to early July during the grain-filling stage, due to the
senescence of lower leaves, EVI dropped sharply in late June. Inspection of RGB
images revealed that the field was partially senescent by this time, with large
portions of the spelt appearing almost yellow and dry, suggesting senescence and
ripening in the field.

Visually observing Figure 2.5, treatment-related differences are most pro-
nounced on May 15th and June 2nd. T1 consistently shows higher EVI values
(green and yellow hue-red outline) compared to R1 (blue hue-white outline). T2
demonstrates lower values (blue hue-red outline), particularly on May 15th, com-
pared to its reference (green hue-white outline). T3 exhibits consistently lower
values (blue hue-red outline) than R3 (green hue-white outline). On June 14th,
while differences are less pronounced, T3 still displays lower values.

The boxplots in Figure 2.6 corroborate these visual interpretations, providing
a quantitative illustration of the distribution of EVI values across the biochar-
enriched plots and their adjacent references. On each date except July 14th, T1
(biochar + 180kg N/ha) consistently exhibited higher EVI values compared not
only to its adjacent reference (180 kg N/ha) plot but also to other treatments and
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Figure 2.5: Time series of the spatial distribution of EVI in the field experiment area.

references, indicating improved crop performance with biochar and high nitrogen
fertilization. Most pronounced on June 2nd, which corresponds to the early
flowering emergence phase.

T2 (biochar + 90kg N/ha) revealed a variable pattern relative to R2, with
lower EVI values than R2 on May 15th and June 29th, but higher on June 2nd
and July 14th, and similar on June 14th. This variability suggests that biochar
partially compensated for reduced nitrogen and maintained performance but not
consistently throughout the growing season.

T3 (biochar + 40kg N/ha) consistently showed the lowest mean EVI values
compared to all references and treatments, indicating that drastically reduced
nitrogen levels negatively affect crop performance, and biochar alone is insufficient
to mitigate this reduction.

The statistical analysis of VIs using Cohen’s d-test effect size throughout the
growing season revealed complex interactions between biochar application and
nitrogen levels on spelt crop performance, as illustrated in Table 2.3. The differ-
ences between treatments and references vary over time, further indicating that
the effects of biochar and nitrogen are not constant throughout the growing sea-
son. By mid-July, which corresponds to the senescence phase and occurs one day
before the harvest, many of the differences between treatments had decreased,
and the differences between biochar-enriched and references were negligible. This
can be explained by the insensitivity of VIs to non-green vegetation (low chloro-
phyll content)

The comparisons between T1, T2, and T3 revealed the effects of biochar at
different nitrogen levels on spelt performance. The differences between treat-

33



Figure 2.6: Boxplot of EVI values across the three biochar stripes versus the three reference
stripes for each acquisition date. The boxes represent the interquartile range (IQR) from the
25th to 75th percentile. The black horizontal line indicates the median, while the red diamond
represents the mean for each plot

ments (T1-T2-T3) were generally larger than those between treatments and ref-
erence plots, suggesting that nitrogen levels had a more pronounced effect on
spelt growth than biochar alone. T1-T3 consistently demonstrated the most pro-
nounced disparities, primarily due to the higher nitrogen fertilization in T1 com-
pared to T3, despite both having the same biochar application. EVI exhibited the
highest sensitivity to the differences between the treatments with a large effect
size (1.0 ≤ d) between T1-T3, followed closely by OSAVI. However, both indices
showed weaker differentiation between the treatments on June 14th, which is ap-
parent in Figure 2.6, with a low effect size. Interestingly, on this specific date, the
indices sensitive to nitrogen content in crops, such as NDRE and s-CCCl, cap-
tured the differences between treatments with large effect sizes (1.0 ≤ d) when
the greenness indices were less sensitive. Clred and NDVI captured the strongest
effect on June 2nd, revealing improved chlorophyll content of spelt in T1 (high ni-
trogen) compared to T3 (low nitrogen), likely during early flowering, when these
indices are most sensitive to variations in canopy chlorophyll content before the
potential saturation at full flowering as on 14th (maximum greenness)

Comparing biochar-enriched treatments with their respective references (T1-
R1, T2-R2, T3-R3) provided insights into the effect of biochar at each nitrogen
level. T1-R1 comparison showed low to medium effect sizes (0.20 ≤ d ≤ 0.8)
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throughout the growing season, particularly for EVI, with T1 consistently outper-
forming R1. This suggests a positive effect on crop productivity even at optimal
nitrogen levels. The yield data, as reported by the farmer, corroborates this find-
ing, with T1 yielding 5% higher than the reference yield. The pronounced effect
detected by EVI, followed by less significant responses from chlorophyll-related
indices (such as CVI and ClRed), suggests that biochar had limited impact on
chlorophyll content, potentially rather in LAI and FVC.

Interestingly, while T2 and R2 reported similar yields, suggesting biochar
maintained yield with reduced nitrogen input (T2: 90 kg N/ha, R2: 180 kg
N/ha), VIs revealed temporal differences between the treatments. EVI captured
differences with large and medium effect sizes on May 15th and June 29th, re-
spectively, when T2 underperformed R2, but a low effect size on June 2nd, when
T2 outperformed R2. The larger effect in mid-May compared to the lower effect
on June 2nd indicates that the reduced nitrogen input had a more pronounced
and inverse effect on crop performance than initially assumed, and while biochar
may have partially compensated for reduced nitrogen, it did not fully mitigate
its impact throughout the growing season.

T3-R3 comparisons showed the largest differences between the treatments and
references, further supporting the T1-T3 findings that low nitrogen in T3 led to
decreased spelt development. EVI captured this lower performance on June 29th,
with a large difference (d ≤ 0.8). This finding aligns with the yield data, which
indicated that T3 yielded 20% less than the reference.

2.4 Conclusion
A crucial aspect of this research was the establishment of a straightforward data
processing workflow for the P4M imagery to convert raw DJI P4M image data
(DN) into reflectance maps. These maps were subsequently used to estimate
broadband VIs, which were employed to assess the spelt development during the
growing season.

P4M-based VIs demonstrated potential in differentiating between biochar-
fertilized and control patches and monitoring crop phenology throughout the
growing season, as evidenced by EVI. The analysis of VIs revealed complex in-
teractions between biochar application and nitrogen levels on spelt crop per-
formance. Treatment 1 (biochar + 180 kg N/ha) consistently outperformed its
reference, indicating a positive biochar impact at high nitrogen levels. Treatment
2 (biochar + 90 kg N/ha) showed variable performance, suggesting biochar par-
tially compensated for reduced nitrogen input but not consistently. Treatment 3
(biochar + 40 kg N/ha) consistently underperformed its reference, demonstrat-
ing that biochar was insufficient to mitigate reduced nitrogen levels. Statistical
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Index Comparison 15 May 02 Jun 14 Jun 29 Jun 14 Jul

NDVI

T1 - T2 0.05 0.62 0.54 0.77 0.09
T1 - T3 0.17 1.44 0.46 0.98 0.41
T2 - T3 0.21 0.84 0.09 0.19 0.32
T1 - R1 0.02 0.53 0.52 0.26 0.01
T2 - R2 0.20 0.20 0.10 0.64 0.10
T3 - R3 0.36 0.64 0.26 0.77 0.29

EVI

T1 - T2 0.96 0.63 0.49 0.97 0.13
T1 - T3 1.17 1.48 0.32 1.06 0.26
T2 - T3 0.19 0.76 0.16 0.11 0.14
T1 - R1 0.21 0.66 0.48 0.40 0.02
T2 - R2 0.86 0.25 0.09 0.74 0.11
T3 - R3 0.73 0.42 0.11 0.81 0.02

OSAVI

T1 - T2 0.55 0.67 0.12 1.02 0.01
T1 - T3 0.71 1.18 0.38 1.19 0.28
T2 - T3 0.16 0.84 0.35 0.20 0.34
T1 - R1 0.15 0.54 0.11 0.37 0.17
T2 - R2 0.53 0.17 0.07 0.78 0.34
T3 - R3 0.51 0.72 0.25 0.71 0.04

NDRE

T1 - T2 0.25 0.72 0.81 0.04 0.08
T1 - T3 0.58 1.01 0.91 0.23 0.10
T2 - T3 0.29 0.28 0.09 0.26 0.02
T1 - R1 0.11 0.30 0.29 0.10 0.08
T2 - R2 0.24 0.24 0.40 0.27 0.05
T3 - R3 0.38 0.62 0.51 0.15 0.07

CIred

T1 - T2 0.09 0.58 0.52 0.73 0.08
T1 - T3 0.15 1.31 0.42 0.92 0.31
T2 - T3 0.26 0.78 0.11 0.18 0.22
T1 - R1 0.02 0.53 0.48 0.27 0.03
T2 - R2 0.19 0.18 0.12 0.60 0.08
T3 - R3 0.36 0.60 0.29 0.73 0.22

CVI

T1 - T2 0.33 0.19 0.62 0.13 0.06
T1 - T3 0.30 0.07 0.67 0.19 0.42
T2 - T3 0.03 0.11 0.06 0.06 0.48
T1 - R1 0.06 0.26 0.08 0.19 0.20
T2 - R2 0.18 0.33 0.57 0.06 0.07
T3 - R3 0.10 0.17 0.40 0.14 0.05

s-CCCI

T1 - T2 0.44 0.66 0.64 0.78 0.05
T1 - T3 0.73 0.68 0.83 0.76 0.22
T2 - T3 0.27 0.01 0.16 0.00 0.17
T1 - R1 0.13 0.14 0.09 0.37 0.11
T2 - R2 0.30 0.38 0.40 0.34 0.01
T3 - R3 0.42 0.53 0.46 0.65 0.06

Table 2.3: Magnitude of difference between means for VIs comparing biochar-treated and refer-
ence plots, measured by Cohen’s d; Bold values indicate large effects (D > 0.80) effects; Gray
highlighting comparisons with the large differences mentioned in the text.

analysis and yield data corroborated these findings, showing that nitrogen levels
had a more pronounced effect on spelt growth than biochar alone. The biochar
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treatment showed the most indicative impact on spelt crops during the flowering
emergence stage, from early to mid-June, as captured in the T1-R1 comparison.
Among estimated VIs, EVI proved to be the most effective index for detecting dif-
ferences between treatments and, particularly, for identifying the biochar impact
at high nitrogen levels, as illustrated by the medium effect size observed between
T1-R1 on June 2nd. However, the interpretation of the results could have been
enhanced by incorporating additional field measurements such as yield, LAI, and
chlorophyll content throughout the season.
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Chapter 3

High spatial resolution imaging
of solar-induced chlorophyll
fluorescence (SIF) from an
uncrewed aerial vehicle (UAV)

This chapter is based on the author’s submitted article:

S. Salattna, J. Bendig, A. Elibol, B. Siegmann, C. Kneer, and U. Rascher, “High
spatial resolution imaging of solar induced chlorophyll fluorescence (SIF) from
an uncrewed aerial vehicle (UAV),” IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, submitted

The table below indicates the origin of different sections within this chapter:

Newly added
(*)

Adapted (†) Original

subsection 3.2.1,
Figure 3.9, sub-
section 3.2.3

section 3.1, sub-
section 3.2.4

subsection 3.2.5
- section 3.5
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3.1 Introduction (†)

The interpretation and validation of satellite and airborne-based SIF retrievals
rely on the comparison with field measurements [216]. Yet, there is a scaling
difference between these levels of observation that could be bridged by UAVs
with sufficient signal-to-noise ratio (SNR) and geometric accuracy [217]. UAVs
have the potential to acquire SIF data with high spatial and temporal resolution,
recording data from 10 up to 120 m (AGL). In addition, UAVs serve as versatile
and cost-effective platforms [218] at a small scale and give new avenues for further
exploring the potential of SIF in precision agriculture and digital agriculture,
particularly in plant phenotyping and breeding [219, 150].

To date, few studies have demonstrated the retrieval of SIF from UAV plat-
forms. Early attempts by [220] utilized a fixed-wing UAV equipped with a thermal
camera and micro-hyperspectral imager operating in push-broom mode with 30
cm spatial resolution, 1.85 nm spectral sampling interval, 6,4 nm full width at
half maximum (FWHM) spectral resolution, and a wavelength range of 400-900
nm, to analyze crop water stress from orchard trees. The SIF retrieved from
micro-hyperspectral significantly tracked the water stress levels, R² = 0.66 (p
< 0.001) with water potential. However, the system had limitations due to the
spectral resolution being too coarse to retrieve SIF quantitatively.

Few other studies have explored SIF retrieval using rotary-wing UAVs equipped
with high spectral resolution non-imaging spectrometers. Among these, a study
by [221] introduced the Piccolo-Doppio system- a dual field-of-view spectrometer
system that enhances SIF retrieval with high spectral resolution (0.2 nm) and
SNR (1000:1). The study described the instrument calibration procedures, and
uncertainties related to SIF measurements.

Another study by [222] focused on the development and technical aspects of
the HyUAS system, which utilizes a small rotary-wing UAV equipped with a non-
imaging small hyperspectral (USB4000) to measure reflectance and SIF with an
FWHM of 1.5 nm and spatial resolution from 0.5 to 12 m. F760 was estimated in
this study through the 3FLD SIF retrieval method. Their study mainly tested the
system, and the results showed a good agreement between HyUAS and ground-
based spectral measurements for the investigated land cover.

The authors [154] conducted a comprehensive study to assess the potential
of the AirSIF system, a dual-field-of-view spectroradiometer system (QE Pro)
with a 1000:1 SNR and 0.8 nm FWHM, in measuring SIF from a multirotor
UAV. The system performance was tested for Alfalfa (Medicago sativa) and grass
canopies and validated against ground measurements using the same system.
Sensor etaloning and platform motion correction were introduced to improve ge-
olocation and shape reconstruction of the SIF measurements.
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The innovative rotary-wing UAV system presented by [223] employs a non-
imaging hyperspectral spectrometer operating (QE Pro) with 0.15 nm FWHM
spectral resolution and a 1000:1 SNR for measuring F760. This study focused on
evaluating the system over a heterogeneous corn field and soybean/corn plots with
varying nutrient treatments. The findings demonstrated the ability of the UAS-
based F760 to distinguish plots with different crop yield potentials and showed a
strong correlation (R² = 0.81) with data from a fixed SIF tower system.

The authors [150] introduced the FluorSpec system, which utilizes a non-
imaging hyperspectral spectrometer (QE-Pro) operating with a spectral resolu-
tion of 0.3 nm to measure the F760 in the oxygen absorption bands. The system
performance was tested over potato and sugar beet plants and validated against
ground-based measurements. The study demonstrated the ability of the Fluor-
Spec to measure F760 at ground and field levels reliably and to detect clear diurnal
F760 patterns.

Although the non-imaging systems discussed above are able to collect high
spectral resolution SIF information, the measurements are only representative of
single points integrated over the canopy and do not provide information about
the spatial variability of SIF. Available imaging instruments currently lack the
optimal spectral resolution and SNR for SIF retrieval. Their very high spatial
resolution can produce complex reflectance anisotropy patterns, complicating the
interpretation of vegetation indicators [222]. Additionally, most available imaging
SIF sensors are too heavy to be carried by UAVs for low-altitude flights, limiting
the availability of high spatial resolution SIF measurements that can distinguish
between sunlit and shaded pixels within a canopy and detect subtle variations in
fractional vegetation cover [224].

Motivated by the lack of imaging UAV-based SIF systems [225] developed a
novel imaging stereo-camera system (SIFcam) for the measurement of SIF in the
far-red wavelength range (F760) with centimeter ground sampling distance. [224]
presented the first F760 datasets recorded by the SIFcam. The study focused on
evaluating the system performance and analyzing the contribution of sunlit pixels
to the F760 signal.

Building upon the initial methodology developed by [225], which had not yet
been consolidated, this study presents two distinct workflows for the retrieval
of F760 and generation of field-scale F760 maps. The first refines the previously
developed approach, while the second introduces an innovative MATLAB-based
method. These workflows aim to identify the method providing the best geometric
and radiometric quality. To achieve this goal, the following research questions
were addressed:

1. Do the developed workflows lead to F760 values within plausible ranges, and
how comparable are these retrieved F760 maps with simultaneous observa-
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tions recorded with reference instruments: the ground-based point spec-
trometer (FloX) and airborne imaging spectrometer (HyPlant)?

2. How can uncertainties in SIFcam data be measured, and how can bare soil
pixels contribute to the uncertainty assessment?

3. How stable is the SIFcam when image data are acquired from a moving
UAV platform?

4. How strongly is F760 affected by the georectification of the image data?

3.2 Materials

3.2.1 SIFcam (†)
The SIFcam system was built and developed by Forschungszentrum Jülich in
cooperation with the University of Applied Science Koblenz and supported by
the ‘Strukturwandel- Projekt Bio¨okonomieREVIER,’ which is funded by the
German Federal Ministry of Education and Research. The system contains two
16-bit sCMOS cameras. Both cameras are equipped with ultra narrowband,
high-quality optical filters to gain high background radiation suppression in the
telluric oxygen absorption band at 760.7 nm and at 757.9 nm to measure the weak
SIF signal. The cameras utilize 25 mm fixed focal length lenses that produce a
field of view of approximately 41 degrees with f/1.8 aperture and near image-
side telecentric properties. The system was built for ground- and drone-based
field applications, featuring spatially high-resolution images and a lightweight
setup. The system is described in detail in [225], where the applicability of the
system was demonstrated in the lab and a controlled experimental setup. In this
study, we systematically assessed the performance of the SIFcam under realistic
field conditions for the first time. Figure 3.1 shows the SIFcam camera system
mounted on a DJI Matrice 600 Pro UAV.

3.2.2 HyPlant(*)
HyPlant is a high-performance airborne imaging spectrometer designed specif-
ically for vegetation monitoring and fluorescence retrieval in the atmospheric
oxygen absorption bands. HyPlant was developed and built by Forschungszen-
trum Jülich in cooperation with Specim Spectral Imaging Ltd. (Finland). The
instrument consists of two sensor modules. The DUAL module measures surface
radiance in the spectral range from 380 to 2500 nm. The second module is the
FLUO module, which is dedicated to retrieving SIF in the oxygen absorption
bands. It acquires data in the spectral region of 670 to 780 nm with fine spectral
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Figure 3.1: SIF dual-camera system mounted on a DJI Ronin MX gimbal

resolution (0.28 nm for O2-A and 0.29 nm for O2-B absorption features) and a
high SNR (296 for O2-A; 442 for O2-B) [147, 148]. HyPlant enables SIF mapping
at a high spatial resolution of approximately 1-4 m, which is sufficient to reveal
the spatial variability between different vegetation types. HyPlant serves as the
airborne demonstrator for the future FLEX satellite mission and has been used
in many airborne surveys to exploit the potential of spatial SIF information for
terrestrial and aquatic ecosystems.

3.2.3 FloX(*)

Spectrometer Fluorescence Box (FloX) is a hyperspectral field spectrometer sys-
tem manufactured by JB Hyperspectral Device GmbH (Düsseldorf, Germany)
that measures SIF under natural light conditions with a high SNR of 1000:1
[226]. The instrument consists of two spectrometers from Ocean Insight (Ocean
Insight, Orlando, FL, USA): i) FLAME S, covering the full range of VNIR (400–
900nm); ii) QEPro covering the red and NIR range (650–800 nm), with a higher
spectral resolution (FWHM of 0.3 nm) enabling SIF retrieval in the oxygen ab-
sorption bands O2B and O2A, respectively. Each spectrometer consists of two
fiber optics (downward and upward) to allow simultaneous measurements of the
solar irradiance and target reflected radiance [226, 227, 228].
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3.2.4 Data Acquisition
SIFcam data were collected on 13 June 2021 under clear sky conditions. The
sun elevation angle was 38.5°, and the measured photosynthetic active radiation
was 349 Wm−2. The imagery was captured using a DJI Matrice Pro 600 drone
equipped with a DJI Ronin MX gimbal from SZ DJI Technology Co., Ltd., Shen-
zhen, China. The drone followed a stop-and-go flight pattern to ensure sharp
images for the 760 nm band camera. Flight settings are described in Table 3.1

Table 3.1: SIFcam setting in the field

Parameter Value
Integration time for channel757 14 ms
Integration time for channel760 70 ms

Flight Altitude (AGL) 25 m
Ground sampling distance (GSD) 0.015 m

Side overlap 70 %
Forward overlap 80 %

Apertures focal length f/8.0
Spatial Binning 2x2

Airborne imagery was recorded with the HyPlant imaging spectrometer [147]
under clear sky conditions on June 13, 2021. The dataset was acquired at 13:46
(local time, UTC+2). The flight altitude was 350 m (AGL), which resulted in
a spatial resolution of 1m × 0.5m in the final maps. The HyPlant imagery was
processed to derive the top of canopy F760 using a spectral fitting method outlined
in [148].

Ground-based reference data were collected using a FloX point spectrometer
(JB Hyperspectral Devices GmbH, Düsseldorf, Germany) at various locations
within the field on June 13, 2021, between 10:11 and 10:46 (UTC) Figure 3.2.
In total, we used ground data from 13 experimental plots (5: faba bean, 5:
faba bean-spring wheat mixture, 2: spring wheat, and 2: bare soil). Three
measurements were collected from each plot. Measurements were recorded at a
height of 2 meters above the canopy with fibers attached to the FloX having a
25° field of view. F760 is referred to as “FloX-F760” and was derived using the
iFLD method [137]. The three measurements from each plot were averaged for
further analysis.

3.2.5 Field Experiment
The research was completed at the agricultural research station Campus Klein-
Altendorf in Bonn, Germany Figure 3.2. The experiment involved a field exper-
iment of 72 plots, each plot measuring 1.5 by 3 m. These plots contained 1:1
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mixtures of different spring wheat (Triticum aestivum L.) and faba bean (Vicia
faba L.) varieties alongside monoculture plots of beans and wheat. Six different
mixtures, including three wheat genotypes (Anabel, SU Ahab, and Sorbas) and
two faba bean genotypes (Mallory and Fanfare), were compared to their corre-
sponding single-crop plots. The objective of the experiment was to understand the
contribution of the structural and functional mechanisms in the positive effects
of crop mixtures [229].

3.3 Processing chain
The SIFcam generates 16-bit grayscale images in TIFF format. The proposed
two distinct workflows Figure 3.3 are outlined in subsection 3.3.1 and subsec-
tion 3.3.2. The main difference between the two workflows is primarily in the
sequence of image stitching relative to SIF calculation and the choice between
utilizing Agisoft Metashape or an in-house mosaicking algorithm developed using
MATLAB subsection 3.3.3 and subsection 3.3.4 describe the preprocessing steps,
including flat field and dark-current corrections, radiometric calibration, and ap-
plication of the Empirical Line Method (ELM) to convert the at-sensor radiance
into Top-Of-Canopy (TOC) radiance and reflectance values. Since the SIFcam
consists of two cameras with two ultra-narrowband interference filters, the ac-
quired pair of images must be co-registered for SIF computation. Sections sub-

Figure 3.2: Map of the Mixed Crops experiment in Campus Klein Altendorf in Bonn, Germany.
The background image corresponds to the RGB orthomosaic captured by UAV on June 14, 2021.
The ROIsrandom locations (red rectangles) represent randomly selected spots for further analysis
in subsection 3.4.4
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section 3.3.5 and subsection 3.3.7 explain when and how both workflows perform
the co-registration of the two channels and the generation of the mosaic (global
alignment). subsection 3.3.6 describes SIF retrieval at 760 nm (F760) using the
standard Fraunhofer Line Discrimination (sFLD) method, while subsection 3.3.8
illustrates the georeferencing process.

3.3.1 Workflow 1
The first workflow (Figure 3.3) follows these steps to produce the F760 map :

1. Correcting the raw individual images from the two channels (C757, C760)
for the dark current and flat field effect, subsection 3.3.3

2. Mosaicking the corrected images using Agisoft Metashape (1.8.1), subsec-
tion 3.3.7

3. Converting the corrected digital numbers (DN) values of the orthomosaic
to at sensor radiance, subsection 3.3.3

Figure 3.3: Flowchart of the SIFcam processing chain; DN: digital number, ELM: empirical
line method, TOC: top of the canopy, Ortho: orthomosaic, Ref: reflectance, sFLD: standard
Fraunhofer Line Discriminator
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4. Computing irradiance and reflectance, subsection 3.3.4

5. Computing F760, subsection 3.3.6. henceforth denoted as F760 mosaic 1

6. Georeferencing F760 mosaic 1, subsection 3.3.8

3.3.2 Workflow 2
To obtain precise F760 information for subsequent qualitative and quantitative
analysis, we followed the image mosaicking pipeline workflow 2 (Figure 3.3) and
made some modifications to compute F760 values at the pixel level within the final
mosaic through the following steps:

1. Precise co-registration and warping of image pairs (C757, C760) to generate
a single multi-TIFF image with two channels in DN, subsection 3.3.5

2. Applying the corrections outlined in subsection 3.3.3 to the individual
paired images

3. Computing the radiance and reflectance at 757 nm and 760 nm for image
pairs, subsection 3.3.4

4. Computing F760 images, subsection 3.3.6.

5. Mosaicking with an intermediate step including applying global alignment
to two band images (757 nm and 760 nm reflectance), subsection 3.3.7,
and using the result of this alignment, the global pose map, as a geometric
framework to generate the F760 mosaic. Two mosaics are generated from
the two used approaches (F760 ortho 2a and F760 ortho 2b).

6. Georeferencing the final mosaics, subsection 3.3.8.

3.3.3 Raw Data to At-Sensor Radiance
As SIF is measured in absolute radiance units, the first step in the processing
chain involves converting the raw spectra DN to at-sensor radiance [150]. This
is achieved by removing dark current (averaging dark images and then pixel-wise
subtraction from the raw data), normalization by integration time, and multi-
plication by the radiometric calibration coefficient per wavelength. Additionally,
the images were corrected for the flat field effect to reduce illumination inho-
mogeneities introduced by the lens, like vignetting and angle-dependent filter
transmission equation (1).

Lat_sensor =
RawDN(λ)−RawDC(λ)

IT
× coeff rad(λ)× ff(x,y) (3.1)
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Where L is the upwelling at-sensor radiance in mW m-2 sr-1 nm-1, RawDN are DN
of the raw data, RawDC is dark current, IT is integration time in ms, coeffrad is
the radiometric calibration coefficient, and λ indicates the corresponding wave-
length. Radiometric calibration data coeff rad was generated in the laboratory
by taking images of an integrating sphere with a known, spatially homogeneous
radiance output. ff(x,y) is the flatfield correction matrix for pixel location (x,y),
also generated from the integrating sphere measurements.

3.3.4 Empirical Line Method for Radiance and Apparent
Reflectance

One common approach for converting at-sensor radiance to TOC radiance (L↑
TOC) is the empirical line method (ELM) [230]. This method corrects spec-
tral data for changes in illumination during flights as well as atmospheric effects
[204]. It involves using at least two reference panels with known reflectance and
Lambertian properties, which means the illumination angle does not affect the
surface reflectance. A simple linear regression is established based on the average
values of at-sensor radiance for pixels collected over the panel’s area (ROIs) and
the measured and resampled reflectance spectra of the panels obtained with a
field spectrometers (ASD Fieldspec 4, Malvern Panalytical, UK). Subsequently,
the linear equation determined for each wavelength (spectral band) is applied to
convert the at-sensor radiance of the image pixels to reflectance. TOC irradiance
(L↓ TOC) can then be calculated as TOC upwelling radiance (L↑ TOC) when
reflectance equals to 1.

3.3.5 Image Registration
Image registration (or matching) is aligning the images from two or more image
pairs of the same scene. It involves integrating images to create a composite
view and extracting information that would be impossible to obtain from a single
image. For this step is important to first co-register the two channels of the
SIFcam into one single pair and then to align all the images into one higher-
resolution image (mosaic image via global alignment).

In workflow 1, while Agisoft Metashape does not have a built-in function
specifically for individual image pair registration, it recognizes the multispectral
images as sets of inherently aligned bands captured simultaneously. Thus, the
software assigns one spectral band as the master channel and uses it for global
alignment, which is performed as follows:

1. Feature detection

2. Matching key points
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3. Estimating camera positions.

Once this global alignment is complete, Metshape co-registers the other spectral
bands using these estimated camera poses. The algorithms used for these pro-
cesses are not disclosed to the public. The software allows users to control aspects
of this process through limited settings like the key point limit and the tie point
limit, which control the upper bound of features detected and matched to man-
age computational load and processing time. It also offers rapid, low-accuracy
initial alignment using generic preselection to preselect likely image pairs before
detailed matching. However, the exact thresholds used for considering two im-
ages as overlapping or for including an image in the alignment are inaccessible
to the user. In our case, for the SIFcam data, we assigned channel 757 as the
master channel because the images have more contrast than in channel 760. We
performed the alignment with the highest accuracy using the default values of
40,000 and 4000 for the key and tie point limits.

In workflow 2, image registration was done using MATLAB(R20223a, Math-
works) functions from the image processing and computer vision toolboxes. We
followed the conventional feature-based pairwise image registration methods that
involve identifying corresponding points between two sets of local distinctive
points (referred to as features) in images based on local pixel statistics or gradi-
ent differences (such as Scale-Invariant Feature Transform (SIFT) [231], Speeded
Up Robust Features (SURF) [232]). This feature-based image registration was
used to warp the image pairs (C757, C760) and to apply the global alignment
subsection 3.3.7 including:

1. Feature detection and descriptor computation: we employed the SIFT al-
gorithm to detect key points and create a robust representation for each.

2. Descriptor Matching: we used Euclidean distance to establish potential
correspondences between the two images; matches are accepted if their
Euclidean distance is less than 10% of the maximum possible distance.

3. Estimating planar transformation between image coordinate frames using
the robust estimation method Random Sample Consensus (RANSAC) to
minimize the impact of outliers.

The RANSAC algorithm [233] is a probabilistic method used for robust es-
timation of parameters. The descriptor-matching step frequently produces some
mismatches. Robust estimation algorithms are used to estimate the dominant
coordinate transformation, which agrees with the largest number of correspon-
dences and rejects outliers. Outliers refer to matched point pairs that do not
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conform to the transformation (relative motion of the robotic platform or cam-
era) between the coordinate frames of overlapping images. The algorithm uses a
threshold in order to decide whether a correspondence is an inlier or outlier. The
threshold within our context is the distance between the corresponding feature
positions when the estimated coordinate transformation is applied. In order to
ensure the accurate matching between images, we use a pretty small threshold
value ranging from 0.5 to 1.5 pixels.

3.3.6 Solar-Induced Chlorophyll Fluorescence Retrieval
The sFLD method for SIF retrieval relies on measuring the radiant flux at two
distinct points: inside and outside a spectrally narrow absorption feature within
the solar irradiance, for instance, the telluric oxygen absorption bands [133, 102].
The magnitude of SIF is determined by comparing the signal detected within
the absorption feature (designated as λin, for instance, 760 nm for O2A) with
the signal recorded at a nearby wavelength (λout, for example, 757 nm), which
encompasses the total solar background irradiance. This study implemented the
sFLD method to retrieve the F760 at the O2A band using the two wavelength
bands λin and λout (760 and 757 nm, respectively).

SIF =
Radin × Irrout −Radout × Irrin

Irrout − Irrin
(3.2)

where Irr is the incident solar irradiance, and Rad is the target radiance in λin

and λout (the bottom and shoulder of the well). Equation Equation (3.2) is
fulfilled if assuming that both reflectance inside (Reflin) and outside (Reflout)
the absorption band, as well as the fluorescence inside (Fin) and outside (Fout)
the band are equal Equation (3.3).

Reflin = Reflout Fin = Fout (3.3)

3.3.7 Mosaicking
A mosaic image is a composite image created by stitching images of an area of
interest. Image mosaicking mainly consists of successive iterations of pairwise
image matching and camera trajectory estimation (known as global alignment
or registration) steps to find the transformation between every individual image
coordinate frame and the selected common (or global) coordinate frame. During
trajectory estimation, a predefined cost function (such as reprojection error [234],
symmetric transfer error [235]) is minimized using feature point positions detected
in overlapping image pairs resulting from pairwise image matching. Spatial rela-
tionships between images are crucial, constraining image positions when mapped
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onto the global (or mosaic) frame. Efficiently establishing these relationships re-
quires accurate trajectory estimation. A fundamental requirement for accurate
trajectory estimation is linking the first and last images in the sequence, encom-
passing all intermediate images. The Initialization step is pivotal at this stage,
focusing on assessing the similarity between image pairs and establishing connec-
tions among them [236]. In the mosaicking step (global alignment), the images
are aligned to a unified coordinate frame. Often, in the absence of additional
information, the coordinate system of the first image is used as a reference frame.
In this step, pixel values are radiometrically altered, which includes resampling
and interpolation to assign pixel values to the new grid location.

In workflow 1, the orthomosaic generation process in Metashape begins with
the global alignment (subsection 3.3.5; once the images are aligned and co-
registered, Metashape generates a dense point cloud using the depth informa-
tion obtained from all spectral bands, which is later used to create the mesh.
Metashape uses the camera poses derived from the master channel to project
both spectral bands (757 and 760) onto the mesh surface. This step involves
resampling and interpolation to adjust the pixel grid of the images to align with
the geometry of the mesh, which can alter the original values. This process also
involves blending images to smooth transitions between overlapping images for
each spectral band, and for this, we used the average blending option. Additional
geometric correction, including resampling, is performed in this step to account
for any remaining misalignments between the two bands.

For workflow 2, we implemented a multi-step process in MATLAB to estimate
the final image-to-map transformation to obtain a more radiometrically accurate
mosaic, including:

1. Creating a two-channel image of reflectance at 760 nm and reflectance at
757 nm and converting the data to 8-bit unsigned integers (0-255 range),
scaling the original values, which provides richer information for feature
detection algorithms compared to Metashape, which uses one channel only.
To ensure robust feature detection and matching, we established a minimum
threshold of 200 detected features per image, automatically excluding any
images from further analysis that did not meet this criterion.

2. Stitching the two-channel images - coarse-to-fine image matching was ap-
plied to identify overlapping image pairs, that are going to be used in em-
ploying a global alignment (subsection 3.3.7) resulting in the pose matrix,
which refers to the position and orientation of the cameras in 3D space rel-
ative to a global coordinate system. This pose matrix (global pose) serves
as an intermediate step for delineating overlap and geographic coordinates.
The coarse-to-fine image matching initially applies image registration with-
out RANSAC using a small number of randomly selected features, and the
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image pairs that have more than 4 matched features are verified further by
using RANSAC. The image pairs that have more than 14 matched features
after RANSAC are used in the global alignment process, which is carried
out by minimizing the symmetric transfer error over the detected feature
positions.

3. Converting the pose back to 2D and using those 2D transformations to
visualize the final F760 mosaic, while the values of the pixels in this mosaic
are obtained by tracking each pixel in the global map to its corresponding
location in the individual F760 images. Thus, the original F760 values were
not altered in the mosaicking (due to the blending step) step because they
were not used in the global alignment. Projecting the pixel coordinate
on the map to the individual F760 images may yield multiple observations
since the same real-world point might appear in different images (due to the
overlap). To address multiple observations of the same pixel, we employed
two distinct approaches to select one value per pixel in the final F760 mosaic
while avoiding bending pixels and alternating original values:

a) Approach 2a: the value in the final mosaic (F760 ortho 2a) is selected
from the F760 image where the pixel’s position is closest to the individ-
ual frame center. In our study, we decided to take the pixels closest
to the center due to the higher spectral and radiometric quality of the
inner core of the image [225].

b) Approach 2b: This approach aims to filter out pixels that show in-
consistent values across images, appearing as positive (vegetation) in
some frames and negative (soil or shadow) in others due to changes
in viewing angle, leaf orientation, or shading. Hence, we computed
the maximum and minimum values of each pixel value across all F760

images where it appeared and selected the value of the pixel in the
final mosaic (F760 ortho 2b) following this criterion:
Pixels with maximum F760 > 0 and minimum F760 > 0 are identified
as leaves or canopy and the final value was taken from the pixel closest
to the center
Pixels with maximum F760 > 0 and minimum F760 < 0 indicate a
mixed pixel (leaves and soil); in this case, all the pixels with negative
values were eliminated, and the pixel value closest to the frame center
from the positive values was selected.
Pixels with maximum F760 < 0 and minimum F760 < 0 are classified as
soil, and the final value was taken from the pixel closest to the center.
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3.3.8 Georeferencing
Sommer and Wade [237] define georeferencing as aligning geographic data to a
known coordinate system, allowing it to be viewed, queried, and analyzed along-
side other geographic data. A common method for georeferencing raster images is
to use ground control points (GCPs) [238]. GCPs are landmarks located at well-
known geographic coordinates that are used to align the raster to the coordinate
system. As the SIFcam currently has no inbuilt global navigation satellite system
(GNSS) sensor for geotagging, the resulting mosaic is not initially assigned to a
geographic coordinate system. In our study, we employed 6 GCPs, measured with
a real-time kinematic (RTK) GNSS with 10 mm horizontal and vertical accuracy
for georeferencing. We applied the second-order polynomial transformation and
nearest neighbor resampling using the Georeferencer tool in QGIS (3.28).

3.4 Results and Discussion

3.4.1 F760 Mosaics from Workflows 1 and 2
Figure 3.4 presents the three mosaics of F760, labeled 1, 2a, and 2b, which give
a visual impression of the results from processing the datasets with the two dis-
tinctive workflows ( subsection 3.3.1 and subsection 3.3.2). The three mosaics
reveal high spatial resolution F760 measurements with a ground sampling dis-
tance (GSD) of 1.5 cm and plausible F760 between 0 and 3 mW m-2 sr-1 nm-1,
as expected for the sFLD retrieval method. From the visual inspection, a clear
spatial distribution pattern in F760 can be observed among the experimental plots
and the rows in each mosaic, with certain rows appearing brighter, the plots in
the bottom row of each mosaic reveal higher F760 than the third row. Also, F760

values varied between the three mosaics; Mosaic 2b shows a pattern of moder-
ately higher F760 values than the others. Mosaic 1 exhibits the best geometric
accuracy, allowing for the identification of single leaves. The rows in the mo-
saic appear to be consistently aligned across the images, with visible and smooth
variations in pixel values. Nonetheless, noticeable striping artifacts are present
in parts of the mosaic (white rectangle). While Mosaics 2a and 2b show higher
value intensities compared to Mosaic 1, they reveal some artifacts and misalign-
ments in some parts (red circles). The observed discrepancies between the three
mosaics are likely due to the mosaic generation method employed. Mosaic 1 was
generated with Metashape using the average blending mode, which smoothes all
the pixels. Mosaic 2a and 2b were generated using the MATLAB algorithm with
no blending but selecting one value for each pixel. This approach may lead to
alignment issues, particularly at the edges of the mosaic, which likely originate
from reduced image overlap at the experimental field margins.
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Figure 3.4: F760 Raster mosaics produced using different workflows. (1) Mosaic generated using
workflow 1. (2a) Mosaic generated using workflow 2a. (2b) Mosaic generated using workflow
2b. The dataset presented in this figure was recorded on June 13, 2021, at 13:30 CET (solar
noon), 25 m (AGL). The red rectangle in Mosaic A indicates the region selected for zooming
in all three mosaics. Adjacent to each Mosaic, the corresponding zoomed-in image provides
detailed views of the selected region, and on the top, a zoomed-in RGB for the same region

3.4.2 F760 Quality Assessment

To assess the uncertainty measurement of the F760 retrieval, we used the accuracy
of the F760 retrieval of the bare soil as a reference as it is a non-fluorescent surface,
with a theoretical fluorescence value of zero. We followed this approach due to
the lack of known, stable F760 reference values similar to those of vegetation.
Numerous bare soil pixels were selected and extracted from soil lines between the
experimental plots from F760 mosaics generated using workflow 1 and workflow
2. Workflow 2b was excluded from this analysis because filtering out the mixed
pixels would have significantly altered the data distribution, making it no longer
normally distributed; thus, analysis using the statistical matrices could lead to
biased or misleading interpretations. High positive and negative F760 values were
observed in the soil pixels, which is likely due to the presence of small plants,
such as grass, within the soil-selected area. The inclusion of these outliers would
have introduced noise and potentially skewed the results. Therefore, a filtering
process was applied to retain only the values within two standard deviations below
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Figure 3.5: The violin plots represent the distribution of soil pixels retrieved F760 (mW m-2

sr-1 nm-1) using workflow 1 and 2a. The boxplot overlay shows the interquartile range and the
median. The mean and median values are highlighted with yellow and blue points, respectively.
Horizontal lines represent deviations from 0: ±0.1 (green), ±0.2 (pink), ±0.5 (orange), and
±1.0 (purple) mW m-2 sr-1 nm-1. The red arrow indicates the Full Width at Half Maximum
(FWHM).

and above the mean for further analysis and visualization (Figure 3.5). Several
statistical metrics were employed to assess and compare the uncertainty of the
SIFcam measurements between the two developed workflows 1 and 2b, Table 3.2.

Workflow 1 violin plot with FWHM of 0.46 mW m-2, sr-1 nm-1 reveals a nar-
row and concentrated distribution of the sensor measurements around the peak
density. This observation aligns with the higher percentage of values clustered
within tighter ranges around zero. The small mean positive value indicates that
the sensor tends to overestimate the soil pixel values by 0.14 mW m-2 sr-1 nm-1.
The close values of mean and median suggest that the soil pixel values are nor-
mally distributed, as shown also by the small standard deviation (SD) and root
means square error (RMSE). In contrast, the workflow 2a violin plot shows a
wider spread of the data with FWHM of 1.36 mW m-2, sr-1 nm-1, consistent with
lower percentages of the data points within the same ranges around zero. Still,
the data is normally distributed, with the mean and median values being the
same as workflow 1, but with higher variability and spread, attributed to the
higher SD of 0.53 mW m-2, sr-1 nm-1. The RMSE of 0.55 mW m-2, sr-1 nm-1

suggests a relatively high error, considering the theoretical value is 0. The close
values of RMSE and SD indicate that the primary source of error is the vari-
ability in the sensor measurements rather than a large systematic bias. Thus,
while there is some small bias (0.14), it is relatively small compared to the overall
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Table 3.2: Descriptive statistics of soil pixels chosen for F760 quality assessment shown in
Figure 3.5, RMSE: root mean square error, SD: standard deviation, MAE: mean absolute
error, FWHM: full width at half maximum

Metric Value of workflow 1 Value of workflow 2a
Median 0.16 0.15
Mean 0.14 0.14
RMSE 0.29 0.55
SD 0.26 0.53

MAE 0.28 0.45
FWHM 0.46 1.36

Percentage within ±0.1 23.24 13.54%
Percentage within ±0.2 47.08 26.86%
Percentage within ±0.5 92.53 61.38%
Percentage within ±1 100 93.51 %

error (RMSE) and not the dominant source of error. Overall, workflow 1 seems
to perform better when considering a non-fluorescent surface as a reference, with
almost half of the measurements being within ±0.2, which is considered to be the
acceptable uncertainty for SIF measurements by the FLEX mission [111].

3.4.3 SIFcam Image Translation Stability
A crucial step in the established workflow 2 is the co-registration between each of
the two corresponding grayscale images into a single pair image (subsection 3.3.5).
The developed algorithm has to account for the shifts in the x and y directions and
rotation differences between the images, using a transformation matrix calculated
for each image pair. A transformation matrix includes tx and ty, which represent
the translation distances in the x and y axes, respectively, required to move the
object to a new position and the rotation angle (in degrees). To assess and
evaluate the quality of this process, we derived the Tx, Ty, and rotation angle
from each transformation matrix corresponding to each image pair and analyzed
two aspects:

• What is the general offset between the cameras?

• How stable is this offset during data acquisition under field conditions?

From Figure 3.6, a relatively constant offset in the x and y directions between the
two cameras can be seen with mean values of −17 and 25 pixels, respectively. This
offset means that when warping image C760 to the master image C757, features
within C760 need to be shifted on average to 17 pixels leftward and 25 pixels
upward. The rotation angles fluctuate around a mean value of -0.24 degrees, so
the cameras are also slightly rotated. The constant shift and rotation are intrinsic
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Figure 3.6: Spatial translations (in pixels) in the x and y axes and rotation angles (in degrees)
derived from transformation matrices used for each image pair co-registration. The primary
y-axis (red) shows the X translation, the secondary y-axis (blue) displays the Y translation,
and the third y-axis(green) shows the rotation.

parameters of the dual camera array and are mostly related to manufacturing
errors, such as inaccuracy in mounting the sensors onto the camera housing or
inaccuracies in the machining of the frame, leading to misalignment of the sensors
(not perfectly parallel). The SD was used to measure uncertainty and assess
the stability of the SIFcam when mounted on a drone during flight operations
in the field. The Tx and Ty fluctuate with an SD of 0.61 and 0.59 mW m-2,
sr-1 nm-1, indicating small and similar instability and variation in the offset in
both horizontal(left/right) and vertical(forward/backward) dimensions between
the images. The rotation angle showed a minimal variation of 0.04 degrees, which
can be considered negligible and unlikely to affect image alignment or analysis
significantly. The observed slight instability is typically related to the altitude
and movement (pitch, roll, and yaw) of the drone during data acquisition in the
field. Also, the two sensors have different integration times; thus, they capture
images at slightly different moments in time, leading to a minimal difference in
image content for the same position. This discrepancy can lead to translation
effects, where objects appear shifted or offset between images. The same results
were observed over another two SIFcam flights from the same field at different
heights (results not shown), which confirms that while the SIFcam has a constant
shift and rotation, it is quite stable during the data acquisition over all the flight
lines and that there is no bias or drift in the mounting of the single cameras in
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the SIFcam frame. Extreme fluctuations or spikes can be observed at some image
indices for Tx, Ty, and rotation angle, which are the images captured when the
drone turns around to change the flight direction path and are not likely due
to high camera vibration. The sharper peaks in the horizontal translation (Tx)
compared to the vertical translation (Ty) assume higher movement of the drone
around its longitudinal axis (roll) than its lateral axis (pitch) at the turning
points.

3.4.4 Impact of Mosaic Georectification on F760 Retrieval
Georeferencing involves resampling the raster pixels to fit them into a geographic
coordinate system. The pixel values are altered according to the interpolation
method used and the geometric transformations performed to change the raster
geometry to fit in the new coordinate system, such that the GCPs align with
their true geographic locations.

Figure 3.7: Comparison of the distribution of pixel F760 values in 15 ROIs (Figure 3.2) be-
tween the original raster (non-georeferenced) and the georeferenced raster from mosaic 2a. The
dividing green line is the median, and the blue triangle is the mean.

To analyze and assess the impact and relevance of the georeferencing on the
final F760 retrieval, 15 random ROIs were selected in the F760 mosaic 2a georef-
erenced and non-georeferenced. ROIs covered various crop varieties (1-13), grass
(14), and bare soil (15); see Figure 3.2. The pixel values from each ROI were
extracted using MATLAB. Figure 3.7 displays the distribution of the pixel values
within each ROI. Visually, there is no substantial difference between the F760

values in the georeferenced and non-georeferenced rasters in most of the ROIs ex-
cept in ROI 2,5 and 6. These ROIs cover different crop varieties and are located
in different parts of the orthomosaic. Thus, no systematic pattern was observed
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to elucidate the differences in these ROIs, which are possibly due to local distor-
tions caused by the use of polynomial transformation, which anticipates a certain
value alteration. Georeferencing might be less accurate in some areas because the
allocation of GCPs was sparse and not evenly distributed; in particular, no GCPs
were in the center of the experimental field. While Georeferencing has some ef-
fect on the F760 values, the effect is small and not the main driver of uncertainty,
as the differences observed are smaller compared to the differences between the
different ROIs (same color) due to the heterogeneity in the field, as explained in
[224].

3.4.5 Validation of the Established Workflows
To evaluate and validate the accuracy and reliability of the final results of the
established workflows, F760 derived from the three mosaics was compared against
simultaneous observations by a ground-based FloX system and imagery acquired
by airborne imaging sensor HyPlant.

Figure 3.8: Comparison of drone-based SIFcam F760 against the ground-based FloX -derived
F760; results from 1) workflow 1 2a) workflow 2a 2b) workflow 2b. Each red dot represents
the mean value of F760 in a 1.5 m sampling footprint. Each plot presents a linear regression
analysis with the corresponding regression equation, coefficient of determination (R² ), root
mean square error (RMSE), mean absolute percentage error (MAPE), and sample size (n).

In workflow 1 plot (Figure 3.8 ), the regression equation reveals a strong linear
relationship between the SIFcam and FloX observations (R² =0.93). The RMSE
and MAPE (0.18 and 12.88 mW m-2, sr-1 nm-1, respectively) suggest a relatively
low error in the model. Workflow 2a shows a slightly weaker correlation (R² =
0.79) and higher RMSE and MAPE values (0.29 and 18 mW m-2, sr-1 nm-1, re-
spectively), implying a more significant deviation from the FloX measurement.
Compared to the other two workflows, workflow 2a underestimates and overesti-
mates some of the higher SIF values, e.g., the two points at the top of the line
are around 2 mW m-2, sr-1 nm-1 for FloX and 2.5 mW m-2, sr-1 nm-1 for SIFcam,
whereas in the cluster of 8 points close by there is some underestimation, 1.5
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mW m-2, sr-1 nm-1 SIFcam vs 2 mW m-2, sr-1 nm-1 FloX, so generally increased
deviation for higher SIF values. In approach 2a (subsection 3.3.7), selecting the
F760 value for each pixel from the closest to the center of all the images, re-
gardless of the value of the pixel (negative or positive), might cause assigning a
negative value to a canopy pixel (fluorescence pixel), which is likely explain the
discrepancy in the results. The results of workflow 2b indicate a strong linear

Figure 3.9: Comparison of drone-based SIFcam F760 against the airborne imaging spectrometer
HyPlant; results from 1) workflow 1 2a) workflow 2a, 2b) workflow 2b

relationship with a slope close to 1 and (R² = 0.92) similar to the workflow 1
plot, albeit with a higher offset (0.35) and thus significantly biased and overes-
timating with the regression line above the 1:1 line. The RMSE is very close to
workflow 1 (0.19 mW m-2, sr-1 nm-1) and MAPE (9.51 mW m-2, sr-1 nm-1) is lower
compared to the other two workflows, revealing a higher accuracy and minimal
average error of the model. The results indicate a strong influence of the pixel se-
lection approach on analysis accuracy. The observed overestimation is likely due
to masking out mixed and shaded pixels (omitting all negative values in mixed
pixels, subsection 3.3.7). This is particularly evident when compared to FloX
observations, where the signal is always an integration of the field of view of a 1.5
m footprint. Figure 3.9 compares F760 obtained from the SIFcam and the Hy-
Plant sensor. The results from previous comparisons with FLoX align similarly
here, where workflows 1 and 2b outperform workflow 2a. Workflow 2b exhibits a
greater offset of 0.5 compared to workflow 1 and a tendency for overestimation.
However, the correlation between F760 of HyPlant and SIFcam is moderate, with
R²= 0.56 and 0.52 for workflow 1 and 2b, respectively. The SIFcam map has a
finer pixel resolution of 1.5 cm compared to the HyPlant maps 1 m resolution.
Thus, to compare them, the SIFcam map has to be resampled and aggregated to
the resolution of the HyPlant map, which alters the SIFcam original F760 values,
particularly if the field is not homogeneous. In addition, high positional accuracy
is vital for the sensor comparison to ensure that features in both datasets are
correctly aligned. The HyPlant map has a precise internal image geometry and
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a high absolute positional accuracy in real-world coordinates with deviations of
less than 2 pixels [148], which is generally considered high for geospatial data.
However, given the high spatial resolution of the SIFcam map, a 2-pixel deviation
in the HyPlant might cause misalignment between the two maps, thus reducing
the correlation between datasets as the features might not match up as expected,
especially in this structured dataset containing small experimental plots. Further
analysis was performed in QGIS to determine if there were any potential shifts
or discrepancies between the SIFcam and HyPlant rasters after the resampling.
Raster subtraction of the two datasets revealed that HyPlant F760 measurements
were mostly lower compared to the SIFcam raster with a mean difference error
and standard deviation of 0.1 and 0.45 mW m-2, sr-1 nm-1, respectively. The
minimal mean difference error indicates that the rasters are well-aligned overall.
Still, the variability (as noted in the standard deviation) can be attributed to
different factors, including local misalignment between individual pixels and the
noise of the SIFcam sensor. Additionally, the SIF retrieval method employed for
SIFcam (sFLD) tends to overestimate SIF values [129], which can explain the
higher SIFcam F760 compared to HyPlant (SfM SIF retrieval method).

3.5 Conclusion
This study introduced two workflows for the SIFcam dual camera system to mea-
sure F760 at a low flying altitude and compared their results against two other
SIF-measuring systems (HyPlant and FloX). All workflows displayed statistically
significant linear regressions with F760 measurements from both sensors, while
workflows 1 and 2b performed better than 2a. Workflow 1 provided more reliable
F760 measurements for the non-fluorescent bare soil, with values clustered closer
around zero compared to workflow 2a. The observed small bias of the bare soil
(mean of 0.14 mW m-2, sr-1 nm-1) in both workflows confirms SIFcam’s capability
of disentangling the fluorescence signal from canopy reflectance with a moderate
level of accuracy and potential noise in the spectral measurements due to the high
spatial resolution and thus lower signal-to-noise ratio. While workflow 1 provides
less data variability than workflow 2, it uses Agisoft Metashape for mosaic gen-
eration. This powerful photogrammetry software can be considered somewhat
of a black box mainly due to its limited transparency and automated processes.
Metashape’s internal algorithms and processing methods are not fully disclosed
to users and offer limited adjustment. Meanwhile, workflow 2 employs the MAT-
LAB computer vision toolbox, which provides a customizable photogrammetry
solution in which the user has detailed insight into all the processes and decision-
making methods. Our analysis revealed that in workflow 1, Metashape’s approach
introduces three instances of radiometric value alteration that happen during the
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global alignment, mosaic generation, and georeferencing. In contrast, Workflow
2 demonstrated one less pixel value alteration by utilizing dual-band reflectance
images for better accuracy global alignment and projecting the pixel coordinate
on the pose map to the individual F760 images to get one value per pixel. Addi-
tionally, while in workflow 1 to resolve the overlapping images, the values were
blended, which altered the DN values, consequently affecting the F760 calculation
afterward, workflow 2 selected a one-pixel value for the overlapped F760 images
and filtered the mixed pixels, thus reducing the complex reflectance anisotropy
patterns (e.g., leaf orientation and shadows), which typically result from the very
high spatial resolution. Our analysis showed that the georeferencing process has
a small effect on the final F760 retrieval and is not a main driver in the mea-
surement uncertainty. Incorporating geotagging into the camera system could
eliminate this step, enhance global alignment, and further reduce the effects of
georeferencing as a last processing step.

The SIFcam system mounted on a UAV showed adequate stability in collecting
data on the field scale, with less than one-pixel variation in the horizontal and
vertical directions, which makes the sensor a promising and well-suited tool for
PA. However, it is recommended to allow for sufficient margins in flight planning
to avoid limited image overlap at the edges of the area of interest. Additionally,
the UAS turns at the end of the flight lines should be as smooth as possible to
reduce the impact on image translation stability.

In conclusion, this study presented two image mosaicking workflows for gen-
erating F760 at a centimeter-level spatial scale from SIFcam imagery, attempting
to fill the scale gap between the proximal and satellite measurements. SIFcam
could support the calibration and validation activities of the forthcoming FLEX
satellite mission as it can be deployed flexibly on the UAS while delivering un-
precedented spatial details. Yet, more measurements are needed to improve the
robustness of SIFcam observations and refine the developed processing chain to
minimize the noise in the SIFcam mosaics.
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Chapter 4

Assessing UAV-based far-red SIF
and Multispectral VIs for
Phenotyping different Winter
Wheat Varieties

4.1 Intoduction

The Green Revolution, driven by the breeding of short-stalked dwarf genes and
the substantial increase in grain yield, has fundamentally changed the cultivation
of winter wheat since the 1960s [239, 240]. The consistent breeding efforts have re-
sulted in new winter wheat cultivars with shorter plant heights, robust stems, and
optimized morphological traits like more erect leaves (vertically oriented leaves),
curved leaf positions, and larger flag leaves to improve light penetration in the
stands of winter wheat, which improves photosynthesis and grain yield poten-
tial [241, 242]. Old tall cultivars with planophile leaves (horizontally positioned)
have higher shading ability compared to the new cultivars even at the same LAI
[243]. Over the past five decades, it was reported that new winter wheat cul-
tivars exhibit better light interception and penetration deeper into the canopy,
resulting in higher photosynthesis, greater crop growth, better resistance to lodg-
ing, improved nutrient utilization efficiency, and significant yield improvements
[244, 245].

Previous research performed a comparative analysis of winter wheat cultivars
bred before and after the Green Revolution (1950s and 2000s) using active fluo-
rescence measurements (LIFT) throughout the growing season. This study has
reported higher Fq/Fm values in the cultivars from the 2000s, named hereafter
New, indicating potentially higher photosynthetic efficiency. Additionally, this
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study observed higher yields and shorter plant heights in new cultivars compared
to the cultivars from the 1950s, named hereafter Old. LAI measurements taken
on June 2, 2021, revealed that old cultivars had higher LAI values than new
cultivars [246].

Building on these findings, our study extends the application of UAV-based
measurements in crop phenotyping by comparing new and old wheat cultivars
through two complementary approaches. We utilize F760 obtained from the SIF-
cam alongside VIs derived from a UAV-Micasense multispectral camera system.
Specifically, this study seeks to:

1. Assess the robustness and applicability of the F760 processing chain devel-
oped in Chapter 3 across diverse winter wheat structures.

2. Investigate the potential of SIFcam in capturing variability between new
and old winter wheat cultivars through F760 measurements.

3. Evaluate the effectiveness of UAV-based VIs in detecting subtle differences
in canopy structure and pigment content among these cultivars.

4. Compare F760 measurements and VIs in characterizing phenotypic varia-
tions between the old and new winter wheat cultivars.

4.2 Field experiment
This work was part of the Phenorob Central experiment, which was conducted
at the experimental agricultural field station Campus Klein-Altendorf in Bonn,
Germany (Latitude: 50.628122° N, Longitude: 6.9888° E). The site has an oceanic
climate with an average temperature of 9.4°C and an average annual rainfall of
603 mm (Campus Klein Altendorf, n.d.). The site features an arable soil base and
nutrient-rich parabrown soil with a soil number of 85-90. The experiment involved
42 winter wheat varieties. In our study, six different winter wheat varieties were
investigated. Three new short-straw cultivars, namely Robigus (2003), Brompton
(2005), and Alchemy (2006), and three old long-straw cultivars, namely Bersee
(1951), Capelle disperse (1953), and Banco (1956). The short-straw cultivars have
a more erectophile leaf position throughout the entire vegetation period, while
the long-straw varieties are more planophile. Wheat was grown in four replicates
in a semi-randomised block design. Each plot is 3 x 3 m and bordered on the long
sides by the Julius variety. All plots were fertilized and treated with pesticides to
the same extent. Figure 4.1 shows a schematic map of the experimental setup.

Nitrogen fertilization was applied using an ammonium nitrate-urea solution
(AHL) with 30% nitrogen (N) three times between March and June 2021, and
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Figure 4.1: Schematic structure of the winter wheat experiment in Campus Klein Altendorf
in Bonn, Germany. The background image corresponds to the RGB orthomosaic captured by
UAV on June 13, 2021

various plant protection measures were implemented at various stages of crop de-
velopment throughout the growing season, including the application of herbicides,
growth regulators, fungicides, and insecticides.

4.3 Methods and tools

4.3.1 UAVs-based data acquisition and processing

SIFcam data was collected on June 14, 2021, at 13:30 under clear sky conditions (
subsection 3.2.1). Flight settings are the same as described in Table 3.1; however,
the altitude for this flight was set at 20 m (AGL).

SIFcam data were processed following the established processing workflow
outlined in subsection 3.3.2. However, after computing the F760 images generated
as explained in subsection 3.3.6, stitching individual F760 images encountered
significant misalignment issues, especially between different flight lines, indicating
insufficient side overlap between images; although the flight was set to a 70% side
overlap, the elimination of the blurry images compromised the overlap between
the remaining sharp images. Several attempts were examined to mitigate this
misalignment ( subsection 3.3.7), including:

1. The reflectance of channel 757 was used for the SIFT features detection
and image matching, as channel 760 was noisy.
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2. In the intermediate step, the geometric frame (pose) was generated from
stitching the 757 channel images, and a less strict threshold of 10 instead
of 14 was used for the number of matched features between the images to
be utilized in the global alignment

Nevertheless, misalignment and outliers persisted. Therefore, F760 was estimated
for each variety from individual co-registered pair images, as outlined in workflow
2 image registration in subsection 3.3.5.

The multispectral RS imagery was acquired on June 14, 2021, using the Mi-
caSense Dual camera system, consisting of two multichannel cameras - the Mi-
caSense RedEdge-MX and the RedEdge-MX Blue (AgEagle Sensor Systems Inc.,
Wichita, KS, USA). The camera was mounted on a Ronin MX gimbal attached
to a DJI Matrice Pro 600 (SZ DJI Technology Co., Ltd., Shenzhen, China). The
cameras capture images synchronously across ten spectral bands, which are close
to the corresponding bands of the Sentinel-2 satellite.

Table 4.1: MicaSense Dual camera system setting in the field

Parameter Value
Flight Altitude (AGL) 20 m

Speed 7.2 km/h
Ground sampling distance (GSD) 0.014 m

Side overlap 60 %
Forward overlap 85 %

Focal length (each camera) 5.4 mm
Field of view (FOV) 47.2°

Image geotagging was achieved using a GNSS receiver on the UAV. The flight
settings are outlined in Table 4.1. The flight was performed around solar noon at
13:30 (local time, UTC+2) under a cloud-free sky. A set of nine near-Lambertian
panels (Mankiewicz Gebr. & Co. (GmbH & Co. KG), Hamburg, Germany) with
known reflectance (ranging from dark (2%) to bright (63%)) were placed next
to the field on bare soil and recorded at flight altitude to convert the radiance
orthomosaic to the TOC reflectance maps during the post-processing ( subsec-
tion 3.3.4).

The Raw MicaSense images (DNs) were converted to radiance as outlined in
[205]. Radiance images were processed to generate an orthomosaic using Agisoft
Metashape standard workflow and georectified using 7 GCPs distributed in the
field. Orthomosaics were generated with mosaic default mode and exported with
the highest spatial resolution (0.014 m). ELM ( subsection 3.3.4) was used to
convert the radiance values of the orthomosaic pixels to reflectance.
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4.3.2 VIs estimation
For structural properties primarily related to LAI, EVI (listed in Table 2.1), MSR
and MTVI2 were utilized. MSR offers enhanced linear relationships with vege-
tation biophysical properties and improved performance over NDVI in address-
ing saturation effects [247]. MTVI2 optimizes LAI estimation by minimizing
chlorophyll content influence and has shown superior linearity with green LAI
[64]. For pigment content, NDRE and the TCARI/OSAVI ratio were examined.
The TCARI/OSAVI (Table 4.2) was selected for its proven accuracy in chloro-
phyll content estimation while maintaining relative insensitivity to canopy cover
variations, even at low LAI values[248]. For pigment content, NDRE and the
TCARI/OSAVI ratio were examined. The TCARI/OSAVI (Table 4.2) was se-
lected for its proven accuracy in chlorophyll content estimation while maintaining
relative insensitivity to canopy cover variations, even at low LAI values[248].

VIs were calculated from the reflectance maps using the raster calculator tool
in QGIS. The band centers used in this study for computing the spectral indices
were 475, 560, 668, 700, and 840 nm for the blue, green, red, red-edge, and NIR
bands, respectively.

VI Formula Reference

TCARI/OSAVI TCARI =
3[(R700 −R670)− 0.2(R700 −R550)(

R700
R670

)]

OSAV I
[248]

MSR MSR =
NIR/R− 1√
NIR/R+ 1

[249]

MTVI2 MTV I2 =
1.5[1.2(R800 −R550)− 2.5(R670 −R550)]√
(2R800 + 1)2 − (6R800 − 5

√
R670)− 0.5

[64]

Table 4.2: VIs used in this study. OSAVI is listed in Table 2.1

4.3.3 Field Measurements
LAI was measured non-destructively using the SunScan (Delta-T Devices, Cam-
bridge, UK), a portable handheld device designed for measuring PAR. SunScan
indirectly measures LAI in plant canopies by analyzing the transmission of PAR
within the canopy. It operates based on key factors, including direct and diffuse
incident light, leaf PAR absorption, canopy leaf angle distribution, solar zenith
angle, and transmitted fraction of light. The Sunscan optical sensor is a light-
sensitive “probe”, one meter long, consisting of 64 photodiodes (PAR sensors).
Whenever a reading is taken, the average PAR level from the Probe is read and
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sent to a handheld PDA interface. Measurements were taken across 12 plots -
third and fourth row of the experiment field (Figure 4.1) - six times in each plot
on June 13, 2021. The SunScan rod was placed diagonally in the crop rows four
times from the sides and parallel to the crop rows from the top and bottom.
Readings were recorded from 12:30 to 12:51 local time.

Chlorophyll readings of the winter wheat varieties were made using a SPAD-
502 (Konica-Minolta, Tokyo, Japan). SPAD provides a non-destructive method
for indirectly estimating leaf chlorophyll content by estimating light transmittance
through the leaf using two LED light sources centered at 650 nm and 940 nm,
corresponding to chlorophyll absorption and non-absorption peaks, respectively.
The device generates unitless SPAD readings based on the differential chlorophyll
absorption of red and infrared light. SPAD readings were obtained from the same
12 plots where LAI measurements were conducted; six measurements were taken
within each plot and averaged to derive a mean SPAD value. SPAD readings were
converted to leaf chlorophyll content (LCC) (mass per unit leaf area, µg·cm−2)
using the relationship proposed by [250]:

LCC =
99 · SPAD

144− SPAD
(4.1)

4.3.4 Statistical Analysis

A statistical analysis was performed to assess the significance of the differences
observed between old and new cultivars based on the calculated VIs and F760.
After extracting pixel values for each plot, the pixel data from replicates of each
variety were combined into a single dataset. Given the large number of observa-
tions in each dataset, the non-parametric Wilcoxon rank sum test was employed
to compare the old and new varieties; nine comparisons were performed. The
p-value was adjusted using the Bonferroni method to reduce Type I error (false
positives) for multiple comparisons [251]. The Bonferroni correction adjusts the
significance level by dividing it by the number of comparisons performed [252]
in our case (0.05/9 = 0.00556). This adjustment ensures that the significant re-
sults are true differences rather than statistical artifacts. Additionally, Cohen’s
d-effect size [215] was calculated to quantify the magnitude of the differences ob-
served between the new and old varieties. The interpretation of effect size (D) is
outlined in Table 2.2
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Figure 4.2: Spatial distribution of TCARI/OSAVI in the field experiment area. The dataset
presented in this figure was recorded on June 14, 2021, at 13:30 CET, 20 m (AGL)

4.4 Results and Discussion

4.4.1 VIs

Figure 4.2 shows the variation of TCARI/OSAVI across the different winter wheat
varieties with four replications each, arranged in experimental plots. The values
range from 0 to 0.15, suggesting healthy crops with high chlorophyll content
across all varieties with a distinct pattern between the winter wheat cultivars.
The old varieties (Banco, Barsee, Capelle), which appear in cyan-green plots
with yellow-orange patches, show higher values in all the replicates compared to
the new varieties (Robigus, Alchemy, and Brompton).

The boxplots in Figure 4.4 illustrate the distribution of F760 values across six
winter wheat varieties, categorized into new and old cultivars, revealing consis-
tent results with the visual interpretation mentioned above. The new cultivars
consistently show lower TCARI/OSAVI values (0.04-0.08) compared to the old
cultivars (0.07-0.13). Given the inverse relationship between TCARI/OSAVI and
chlorophyll content, this suggests enhanced chlorophyll content in the new cul-
tivars. This observation is ascertained by the LCC measurements as shown in
Figure 4.3. New varieties exhibited higher LCC values (49-53 µg·cm−2) compared
to old varieties (43-47 µg·cm−2).

Distinct variations in data distribution and dispersion among the boxplots
(Figure 4.4) can be observed, reflecting differences in canopy architecture. The
canopy heterogeneity seems to be more pronounced in the old varieties, indicated
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Figure 4.3: Sensitivity to chlorophyll variability of TCARI/OSAVI. Chlorophyll content was
estimated from SPAD measurements conducted in the field on June 13, 2021

by larger interquartile ranges in the boxplots, which can be due to their taller
statue and more diverse canopy structures; thus, spectral signatures contain a
mixture of vegetation, shadows, and soil reflectance. In contrast, the new varieties
cluster tightly (compact boxplots); their short straw, dense, and uniform canopy
coverage explains these homogenous spectral values among the plots.

To gain insights into the structural differences between the varieties, MTVI2
was selected due to its best linear correlation with LAI (R² = 0.83) compared

Figure 4.4: Boxplot of TCARI/OSAVI values across different winter wheat varieties. The boxes
represent the interquartile range (IQR) from the 25th to 75th percentile. The blue horizontal
line indicates the median, while the red diamond represents the mean for each variety.
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Variety Brompton3 Brompton4 Alchemy3 Alchemy4 Robigus3 Robigus4 Barsee3 Barsee4 Capelle3 Capelle4 Banco3
LAI 6.33 7.3 7.63 7.38 6.8 7.1 7.38 7.72 7.43 8.83 7.18

Table 4.3: LAI of winter wheat cultivars measured in the field using SunScan on June 13, 2021

Figure 4.5: Spatial distribution of MTVI2 in the field experiment area. The dataset presented
in this figure was recorded on June 14, 2021, at 13:30 CET, 20 m (AGL)

to other structure-related VIs (Figure 4.6). The spatial map (Figure 4.5) shows
a less pronounced pattern, with all plots revealing high MTVI2 values (0.4-0.8)
marked by yellow-orange color, implying robust vegetative growth across all va-
rieties. Slightly higher values can be seen in the old varieties, with red-orange
patches clearly visible in Banco and Capelle. The boxplot analysis (Figure 4.7)
further elucidates these differences, showing higher MTVI2 values and greater
heterogeneity in old cultivars (0.45-0.63) compared to new ones (0.45-0.6), sug-
gesting higher LAI in the old cultivars. These findings align with previously
reported higher LAI values in old winter wheat cultivars despite less pronounced
variations in our in-situ LAI measurements.

The higher median values compared to the mean across all boxplots reflect
uniform, dense canopy structure across most of the experimental plots areas with
sparse areas with spectral signatures (low NIR reflectance or high red reflectance)
likely due to less dense canopy or gaps —particularly apparent in old varieties,
as mentioned before, due to their taller stems, resulting in the observed skew in
the statistical distribution of values in the boxplot.
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Figure 4.6: Relationship between in-situ measured and three structural-related VIs (EVI, MSR,
MTVI2). Each plot presents a linear regression analysis with the corresponding regression
equation, coefficient of determination (R² ), root mean square error (RMSE), and sample size
(n)

Figure 4.7: Boxplot of MTVI2 values across different winter wheat varieties. The boxes repre-
sent the interquartile range (IQR) from the 25th to 75th percentile. The blue horizontal line
indicates the median, while the red diamond represents the mean for each variety.
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Figure 4.8: F760 individual rasters generated using workflow2. The dataset presented in this
figure was recorded on June 14, 2021, at 13:30 CET (solar noon), 20 m (AGL). Background
image corresponds to RGB orthomosaic of the experiment field (Figure 4.1)

4.4.2 F760

Figure 4.8 display the spatial distribution of F760 measurements, with a wide
value range (0-4 mW m-2, sr-1 nm-1), indicating significant heterogeneity in the
fluorescence signal between the varieties in the field. Generally, new cultivars
exhibited higher F760 (intense yellow plots, red outlines) relative to the old cul-
tivars (blue hues, white outlines). Notable discrepancies were observed in the
old cultivar Banco4, which showed high F760 compared to other old cultivars, and
the new cultivars Robigus3 and Brompton3, which displayed comparatively lower
F760 than other new cultivars.

The results in Figure 4.9 reveal distinct variability between and within these
groups. New cultivars generally exhibit higher F760 values compared to the old
cultivars Barsee and Cappelle, with notable variations among individual varieties
and replicates. Among the new cultivars, Alchemy consistently shows the highest
F760 values across all replicates, with mean values ranging from 2.3 to 2.5 mW m�²
sr�¹ nm�¹. In contrast, Brompton and Robigus showed higher variability between
the replicates, with Brompton3 and Robigus3 displaying the lowest values among
the new cultivars, comparable to or lower than certain old cultivars. Among the
old cultivars, Banco stands out with F760 comparable to or even exceeding some
new cultivars, mostly pronounced in Banco4, with the highest mean value of 3.7
mW m�² sr�¹ nm�¹ across all varieties.
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Figure 4.9: Boxplot of F760 values across different winter wheat varieties. The boxes represent
the interquartile range (IQR) from the 25th to 75th percentile. The blue horizontal line indicates
the median, while the red diamond represents the mean for each variety. F760 was filtered using
±2SD to mask outliers.

The observed patterns in F760 emissions can be attributed to the interplay
between chlorophyll content and canopy structure, specifically leaf angle orienta-
tion. New cultivars, characterized by higher chlorophyll content and erectophile
leaf orientation, allow for better light penetration and distribution deeper into
the canopy, resulting in higher photosynthetic efficiency and potentially higher
SIF emission at the leaf level. However, erectophile leaf orientation increases the
reabsorption of the emitted SIF within the canopy, reducing the probability of
SIF escaping and potentially reducing the detected TOC SIF as in Robigus3,
which demonstrates the lowest F760 values among new cultivars, despite having
the highest chlorophyll content overall (see Figure 4.3)

Conversely, old cultivars with planophile leaves intercept more light at the top
of the canopy and shade the lower leaves, leading to lower overall photosynthetic
efficiency and lower SIF emission at the leaf level. Nevertheless, planophile leaves
allow for a higher escape probability of SIF photons, potentially resulting in higher
TOC SIF to be detected despite lower chlorophyll content. As pronounced in
Banco4, which is likely due to the combined effect of its relatively high chlorophyll
content (for an old cultivar, see Figure 4.3) and planophile leaf structure.

4.4.3 Statistical analysis
The statistical analysis using the Wilcoxon rank sum test with Bonferroni cor-
rection of VIs revealed significant differences (p < 0.0056) between old and new
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New Old
TCARI/OSAVI NDRE EVI MSR MTVI2 F760

d Effect d Effect d Effect d Effect d Effect d Effect

Alchemy Capelle 0.73 ** 0.59 ** 0.13 - 0.13 - 0.24 * 0.60 **

Alchemy Barsee 1.0 *** 0.99 *** 0.06 - 0.65 ** 0.11 - 0.77 **

Alchemy Banco 0.89 *** 0.78 ** 0.39 * 0.65 ** 0.33 * 0.01 N/S

Brompton Capelle 0.40 * 0.14 - 0.22 * 0.26 * 0.36 * 0.43 *

Brompton Barsee 0.68 ** 0.49 * 0.16 - 0.24 * 0.24 * 0.59 **

Brompton Banco 0.56 ** 0.30 * 0.46 * 0.24 * 0.45 * 0.14 -

Robigus Capelle 0.64 ** 0.40 * 0.12 - 0.14 - 0.29 * 0.43 *

Robigus Barsee 0.90 *** 0.76 ** 0.05 - 0.36 * 0.17 - 0.58 **

Robigus Banco 0.80 *** 0.57 ** 0.36 * 0.36 * 0.38 * 0.11 -

Table 4.4: Statistical differences between new and old winter wheat varieties based on VIs and
F760 measurements. Values represent pairwise comparisons using Cohen’s d effect sizes. Effect
size interpretation: - (negligible), * (small), ** (medium), *** (large); N/S: not significant,
Bold values indicate large effects (D > 0.80)

wheat cultivars (results not shown). Cohen’s d effect size analysis of the ob-
served variations between varieties varied considerably between the parameters
(Table 4.4). TCARI/OSAVI and NDRE, both related to chlorophyll content,
demonstrated the most pronounced differences between the new and old varieties.
TCARI/OSAVI exhibited medium to large effect sizes (0.50 � d � 1.00), except for
Brompton-Capelle, which showed a small effect size (d = 0.40); Alchemy-Barsee
comparison revealed the largest effect (d = 1.00). NDRE followed a similar pat-
tern, albeit with slightly weaker overall effects. The Alchemy-Barsee comparison
again displayed the largest effect (d = 0.99), while the Brompton-Capelle com-
parison showed the lowest effect (d � 0.20). In contrast, EVI comparisons, while
statistically significant, showed weaker differentiation between new and old va-
rieties. Effect sizes ranged from low to medium, with six comparisons showing
negligible effects. This reduced sensitivity can be attributed to EVI being sensi-
tive to both LAI and chlorophyll content, as evidenced by its moderate correlation
with LAI (R² = 0.63) (Figure 4.6).

MSR showed improved results compared to EVI, but its sensitivity to chloro-
phyll content rather than LAI was evident in its weak correlation with LAI (R²
= 0.22). The highest impact was observed in the same comparisons (Alchemy-
Barsee and Alchemy-Banco) that showed the highest effect sizes in TCARI/OSAVI
and NDRE, further confirming the sensitivity of MSR to chlorophyll content vari-
ations between varieties. MTVI2, while exhibiting smaller effect sizes compared
to MSR, demonstrated a clear relationship to LAI rather than chlorophyll. This

74



was evidenced not only by its strong linear relationship with LAI (R² = 0.83) but
also by its reduced variation in comparisons that showed high chlorophyll-related
differences. These findings align with previous research indicating MTVI2’s lower
sensitivity to chlorophyll effects and enhanced linearity with LAI [64, 247].

Wilcoxon rank sum test For F760 revealed significant differences (p < 0.0056)
in all comparisons between the varieties except between Alchemy and Banco.
Moderate to large effect sizes were observed when comparing new cultivars to
Barsee (d = 0.58-0.77) and Capelle (d = 0.43-0.60). These results align with
differences in chlorophyll content as indicated by TCARI/OSAVI and NDRE
indices, which showed larger effects between new cultivars and Barsee compared
to those between new cultivars and Capelle. Interestingly, F760 exhibits negligible
difference when comparing new cultivars with the old variety Banco (d = 0.01-
0.14), an effect that is not observed when comparing chlorophyll content by means
of TCARI/OSAVI. The MTVI2 analysis revealed the highest difference in canopy
structure between Banco and new cultivars, indicating Banco’s canopy structure
differs more significantly from that of new cultivars compared to Barsee and
Cappelle. This observation implies that the high F760 from Banco is related to its
canopy structure specifically, demonstrating that additional information on plant
productivity could be gained from F760 observations in this experiment.
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Chapter 5

Discussion

Chapter 2 of this thesis focused on exploring the capabilities of a small-scale, high
spatial-resolution UAV system, DJI Phantom 4 Multispectral (P4M), in moni-
toring short-term biochar effects on spelt crops throughout the growing season in
terms of crop growth. A crucial aspect of this research was the establishment of
a processing workflow for the P4M imagery, initiated by the lack of standardized
processing tools for the non-radiometrically calibrated P4M system. The work-
flow integrated open-source Python codes for the pre-processing of raw images
and post-processing of the mosaic (DN), which provided an accessible method
to customize the processing pipeline, potentially benefiting other researchers en-
countering similar challenges. The workflow was successfully employed to convert
raw DJI P4M image data (DN) into reflectance maps. These maps were subse-
quently used to derive broadband VIs, which were utilized to assess the vegetation
development.

P4M-based VIs showed potential in differentiating between the spelt perfor-
mance across biochar-fertilized and reference soil and monitoring crop phenology
over the growing season. EVI proved to be the most effective index for detecting
the impact of biochar treatment on spelt crops and was most evident during the
flowering emergence stage. This observation aligns with findings by [200], who
reported that the effect of biochar on crop development is most evident during the
green-up phase. Higher EVI values in biochar-enriched plots with full fertilization
(180 kg N/ha) indicated enhanced vegetative growth compared to the reference
plot and likely increased leaf chlorophyll content and LAI. However, this effect
was less pronounced or inconsistent at reduced nitrogen inputs. The moderate
effect sizes of the differences observed likely indicate that the impact of biochar
was attenuated due to the experiment being conducted on non-marginal soil un-
der a common nitrogen fertilizer regime. This result corroborates the findings of
[198], indicating that biochar likely improves crop production in highly degraded
and nutrient-poor soils, while its application to fertile and healthy soils does not
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always increase crop yield.
Nevertheless, the interpretation and comparative analysis of our results were

constrained by the lack of UAV data from the early growth stages and field
measurements. Therefore, to provide a more comprehensive dataset for analyzing
biochar effects on crop development, allowing for better interpretation of UAV-
derived VIs, it is recommended to:

1. Begin data acquisition in the green-up phase (late February to early March)
for winter-sown spelt, with more frequent data acquisition (weekly or bi-
weekly) to capture critical phenological stages and differences between treat-
ments.

2. Optimize the experimental setup by implementing well-defined treatment
areas, including pure biochar treatments at multiple rates (low, medium,
high), control plots with no amendments, conventional fertilization, and
combined biochar and fertilizer treatments.

3. Conduct additional quantitative field measurements through the growing
season, including chlorophyll content, LAI, plant heights, and yield upon
harvest.

The study revealed some challenges in DJI image processing due to spatial
misregistration between the five spectral bands in the final mosaic, potentially
arising from differences in sensor integration times, camera calibration issues, or
multispectral image coregistration in Agisoft Metashape. However, developing a
method to correct this misalignment was beyond the focus of our research, so we
attempted to mitigate this issue by applying band-to-band ELM. Yet, [253] have
also addressed the same spectral band misalignment issue in DJI P4M imagery
processed with the Agisoft Metashape standard multispectral processing workflow
where they found an average alignment error of 2.0–2.84 cm. They developed an
alternative processing method that significantly improved alignment accuracy
(average error: 0.2 -0.32 cm.). Their approach involves aligning images and cam-
era calibration of each spectral band as separate chunks (which means processing
images separately for each spectral band), merging all five spectral band chunks
into a single chunk, performing camera re-optimization on the merged chunk, and
then individually processing each chunk to generate five separate orthomosaics,
and finally stacking the mosaics using ENVI software.

While the DJI P4M system offers accessibility and user-friendly features, its
application in vegetation research is not highly recommended. The lack of ra-
diometric calibration and the spectral band misalignment add extra processing,
which can introduce significant uncertainties and complexity to the workflow and
data analysis, potentially compromising the accuracy and reliability of VIs. [254]
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reported that the P4M presents challenges regarding the radiometric correction
process; the percentage error in P4M-based VIs ranged from 21.8% to 100.0% us-
ing the basic DJI Terra software v. 1.0 without radiometric calibration, compared
to 11.9% to 29.5% with radiometric calibration using ELM and the calibration
tool in DJI Terra software v. 2.0. He also reported that the best radiometric cal-
ibration achieved was using the ELM based on a set of reference panels acquired
at the time of flight compared. A subsequent study by [255] further highlighted
the P4M’s limitations in deriving reliable reflectance values and NDVI. While
reflectance differences between bands across orthomosaics from consecutive days
were minor (up to 4%), NDVI discrepancies increased significantly (up to 15%
mean difference and 7% standard deviation). Comparisons with the MicaSense
Altum AL0 reference camera raised significant reliability concerns with NDVI
differences as high as 47% on one day.

Chapter 3 focused on extending the application of the novel far-red SIF imag-
ing sensor, SIFcam, to field-scale measurements. This study refined and built
upon the newly established SIFcam methodology by [225] through a detailed de-
scription of a data processing workflow using the software Agisoft Metashape and
introducing a new, fully customizable, approach for generating high spatial reso-
lution F760 maps. The primary distinction between the two workflows lies in the
timing of F760 calculation relative to image stitching and the software used for the
stitching. This study addressed a critical aspect of high-resolution SIF imaging,
focusing on the impact of image processing techniques and the effects of interpo-
lation in mosaicking on the quality of F760 estimates. The method also considers
the unavoidable interpolation step in registering spectral channels. By compar-
ing the two workflows, limitations were identified in standard photogrammetry
software Agisoft Metashape for F760 images stitching due to their low contrast.
The low contrast constrained feature detection and image alignment. This ap-
proach enabled the estimate of F760 only after generating the mosaic from the
preprocessed raw images (DN). This approach raised concerns about F760 qual-
ity, particularly regarding pixel interpolation in global alignment and blending
during mosaic generation. Nevertheless, the analysis of soil pixels indicated less
noise in the resulting orthomosaic compared to the MATLAB-based workflow.

The developed MATLAB-based workflow mitigated the concerns regarding
interpolation and blending by estimating first F760 from co-registered individual
images and generating an intermediate mosaic from enhanced contrast F760 im-
ages to serve as a geometric framework, and then tracking back the pixel values to
the original F760 images. This approach not only preserved the F760 from further
interpolation but also mitigated leaf shading effects by eliminating mixed pixels.
While this approach is promising, it led to higher noise in soil pixels compared to
the Agisoft Metashape orthomosaic. In addition, the MATLAB-based workflow
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was developed on a single test dataset and was not optimized for high-throughput
data processing. The workflow was initially developed and tested on crops with
relatively uniform canopy structures across the field in the wheat and bean ex-
periment. This motivated an evaluation of its robustness and applicability under
more diverse crop conditions regarding canopy structure and chlorophyll pigment
content. Also, processing a dataset of around 350 image pairs using this workflow
requires around two days on a PC with AMD Ryzen Threadripper 3960X CPU
with 24-Cores, 256 GB DDR4 SDRAM, base/boost clock speed of: 3.8 GHz/up
to 4.5 GHz and Geekbench single-core CPU score of 1704. This limitation has
prompted another ongoing project to translate the MATLAB codes into Python.
This transition leverages Python’s robust multiprocessing capabilities and paral-
lelization that allow for the utilization of multiple or all available CPU cores to
reduce the processing time.

Both workflows developed in this study demonstrated statistically significant
linear regressions with F760 measurements from reference observations with in-
dependent measurements (FloX and HyPlant). However, to fully evaluate the
performance of the SIFcam processing and improve the reliability and robustness
of F760 estimates, future research should focus on conducting a comprehensive
uncertainty assessment that focuses on the contribution of the processing steps
to the final uncertainty budget for SIFcam processing, building upon the assess-
ment introduced by [256]. In this context, all uncertainty sources, including in-
strumental effects, radiometric/spectral calibration, data processing assumptions,
F760 retrieval algorithms, environmental factors, and uncertainty from drone op-
eration, such as positioning error, should be identified and their uncertainties
quantified. Error propagation techniques can then be applied to combine these
individual uncertainties and determine their cumulative effect on the F760 esti-
mates. This analysis will provide the measurement quality of SIFcam in terms of
accuracy (systematic errors) and precision (random errors), ultimately enabling
more informed conclusions regarding the most reliable processing chain.

The SIFcam demonstrated adequate stability in data collection at the field
scale, with less than one pixel variation between spectral channels in both horizon-
tal and vertical directions. The SIFcam has also shown its capability to effectively
disentangle the fluorescence signal from canopy reflectance with a moderate level
of accuracy. This performance can be attributed to the SIFcam’s exceptionally
high spatial resolution for F760 measurements that is currently unparalleled in
the field. To date, only two other studies, both employed the ground-based,
much larger HyScreen system, have reported SIF data at comparable spatial res-
olutions [131, 230]. However, the very high spatial resolution, while valuable,
poses challenges in F760 interpretation due to revealing variation in canopy struc-
ture, which also enhances the influence of directional effects of SIF emission at
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TOC (scattering, reabsorption, and sun-sensor geometries) resulting in complex
anisotropic reflectance patterns. While the directionality effect on reflectance
from UAV-based was addressed [257], such effects on the TOC SIF from high
spatial resolution images have not been well studied and should be investigated
in further studies.

Chapter 4 explored the synergistic potential of SIFcam F760 alongside UAV-
based multispectral VIs to characterize and delineate differences among diverse
new and old winter wheat cultivars. The genotypically determined morphological
traits of the old and new winter wheat cultivars, specifically the plant height and
leaf angle orientation, had formed a heterogeneous canopy structure within the
experiment field. This diversity aimed to assess the robustness of the developed
workflow under more complex field conditions. The study encountered method-
ological constraints stemming from insufficient side overlap exacerbated by the
removal of so many blurry images, hindering the generation of a comprehensive
final mosaic. This limitation subsequently hindered the evaluation of the robust-
ness of the developed methodology. To mitigate these issues in future studies, we
recommend 1) maintaining a minimum 75% side overlap between flight lines to
ensure spatial coverage and 2) utilizing 4x4 spatial binning to reduce integration
times by a factor of four with an adequate flight speed of approximately 2.5 m/s,
thereby minimizing motion-induced blur.

Under the aforementioned limitations, F760 was successfully estimated for each
variety from individual co-registered pair images. This approach demonstrated
a notable potential of SIFcam in capturing the variability of F760 between wheat
cultivars with structural and pigment differences.

New wheat cultivars generally revealed higher F760, consistent with their
higher chlorophyll content, yet old cultivar Banco indicated that canopy architec-
ture could significantly modulate TOC F760, with F760 values comparable to or
even exceeding those of certain new cultivars. VIs outperformed F760 in detecting
unique and consistent patterns between the new and old cultivars. A substantial
variation in VIs’ effectiveness was observed, mostly related to their sensitivities
to chlorophyll content and LAI. TCARI/OSAVI proved to be the most effec-
tive index in distinguishing breeding-induced changes compared to other indices
(Cohen’s d >= 0.5).

The study demonstrated the complex interplay between the TOC F760, canopy
structure, chlorophyll content, and photosynthetic efficiency. While higher chloro-
phyll content enhances SIF emission at the leaf level, it increases reabsorption and
potentially attenuates the TOC SIF signal. Erectophile leaves, common in new
cultivars, improve light penetration and potential SIF emission, yet this vertical
leaf arrangement prolongs the path for SIF photons to escape the canopy, further
boosting reabsorption and likely reducing TOC SIF. Conversely, planophile leaf
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orientation, observed in older cultivars, may result in lower overall SIF production
due to reduced light penetration, yet their horizontal leaf arrangement promotes
more photons to escape the canopy, thus higher TOC SIF despite lower leaf SIF
production.

To further elucidate these complex relationships, additional measurements,
such as leaf-level SIF measurements, active fluorescence measurements for quan-
tifying photosynthetic activity, harvest data, and diurnal SIF measurements and
flights across the growing season, could enhance the study.

The study findings highlight the importance of considering both physical and
physiological factors when interpreting TOC F760 measurements. Therefore, fu-
ture research should focus on developing methods to decouple the effects of leaf
and canopy structure from physiological differences in the SIFcam TOC F760

emissions by calculating F760 efficiency or the Fescape, which describes the scat-
tering of SIF in the viewing direction. This normalization could significantly
enhance the interpretation of SIFcam data and minimize the directional effects,
although it has not been attempted in the current study. A potential method
for F760 normalization and downscaling can be derived from the basic equation
of SIF downscaling presented by [156]

ϵF760 =
πF760

PAR× FCV I
(5.1)

ϵF760 is F760 efficiency in nm−1. In this context, PAR could be obtained from
ground-based measurements, such as weather stations or FloX systems. The VI
could be calculated from multispectral data, with the FCVI being a potential
candidate:

FCV I = RNIR −RV IS (5.2)

This requires acquiring the multispectral data simultaneously with SIF mea-
surements to ensure the same shadow distribution in the canopy. Ideally, as
[156] reported, these data would be collected by the same sensor to minimize
discrepancies.

In addition, a sensitivity analysis using an RTM could enhance the develop-
ment and validation of such a downscaling approach as well as enhance the SIF-
cam F760 data interpretation. RTMs offer a valuable way to investigate the effect
of complex sources of variability related to leaf and canopy structure (e.g., leaf
angle distribution, LAI), PAR absorption, and SIF scattering and re-absorption
on the TOC SIF.

Additionally, future research should focus on disentangling shaded and sunlit
pixels from the total canopy reflectance spectrum to promote further the applica-
tion of the SIFcam-based F760 for plant physiological monitoring. One promising
approach presented by [258] involves applying linear spectral unmixing methods
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to the high-resolution SIFcam image to decompose the measured spectral re-
flectance into the soil, sunlit vegetation, and shaded vegetation components and
retrieve the sunlit FVC (FV Csunlit). In this context, several flights of the SIFcam
should be conducted over selected targets representing pure samples of soil, sunlit
vegetation, and shaded vegetation within a study area synchronized with ground-
based spectral measurements for validation. The estimation of FV Csunlit enables
an estimate of the amount of light absorbed by photosynthetic plant pigments
(green APAR), leading to a more precise estimation of ϵF760 .
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Chapter 6

Conclusion

This study has made a substantial contribution to the UAV-based remote sensing
applications in crop monitoring on the field scale through three studies. The first
study made advancements in multispectral UAV-based data processing with a
low-cost, commercial sensor. The developed open-source Python-based workflow
for the DJI P4M system addressed a critical gap in standardized processing tools
for non-radiometrically calibrated systems, potentially benefiting researchers fac-
ing similar challenges. The study also uncovered the limitations of small-scale
DJI systems in scientific vegetation analysis, particularly the constraints posed
by the limited number of indices estimable from five broad spectral bands and
the frequent saturation of some VIs-like NDVI in dense vegetation. Furthermore,
the research contributed to the understanding of the impact of biochar on crop
performance in the context of climate-smart agriculture. Biochar is more likely
to benefit crop production in degraded, nutrient-poor soils rather than in fertile
conditions.

The second study contributed to the development of robust processing pro-
tocols for the novel SIFcam prototype for imaging of F760 and enabled the gen-
eration of very high-spatial resolution F760 maps that are unparalleled on the
field scale. The research tackled two distinct workflows: refining a previously de-
veloped methodology for generating orthomosaics and introducing an innovative
MATLAB-based approach. The study revealed the trade-offs between high ge-
ometry mosaics obtained from traditional photogrammetric techniques and F760

radiometric quality. The research provided valuable insights into the methodolog-
ical considerations essential for alternating the weak SIF signal in post-processing
as little as possible while leveraging high spatial-resolution imagery with geomet-
ric integrity. SIFcam has demonstrated the potential to disentangle the fluo-
rescence signal from canopy reflectance with moderate accuracy and adequate
stability under field conditions. The study underscores SIFcam as a promising
tool for agricultural applications and paves the way for detailed plant physiolog-
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ical studies, bridging the scale gap between proximal and satellite measurements
and potentially supporting calibration and validation activities for the upcoming
FLEX satellite mission.

The third study marked a noteworthy leap in the application of the SIFcam
system in field conditions, showcasing the potential of integrating SIFcam F760

and UAV-based multispectral VIs in characterizing diverse winter wheat cultivars.
The challenges in generating the F760 map for the winter wheat field due to the
insufficient overlap between flight lines stemming from data acquisition issues,
rather than field heterogeneity, restricted the evaluation of the robustness of the
developed methodology. Yet, the study yielded valuable insights. The research
demonstrated the complex interplay between the TOC F760, canopy structure,
chlorophyll content, and photosynthetic efficiency. The comprehensive analysis
of VIs provided valuable insights into the winter wheat properties most affected
by breeding efforts. The ability of the SIFcam to detect fine-scale heterogeneity
in F760 emissions proved to be a valuable tool for field plant phenotyping and
potentially guiding breeding programs. F760 is affected by the directionality due
to the canopy structure, sun sensor geometry, and scattering and reabsorption
within the canopy. Downscaling of F760 will improve the interpretation of the
F760 and boost its application in crop physiology monitoring.
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